QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 7 matching student topics
Displaying 1–7 of 7 results
Two dimensional heterostructures on SiC for new electronics
The present electronic technology is approaching the limit to the smallest circuit element achievable, and the future electronic devices will depend critically on the development of novel approaches. Two dimensional materials seem to offer an exciting perspective, and the advent of graphene (a single layer of carbon atoms in a honeycomb structure) sparked a huge interest, but its application to electronics are limited by the absence of a band gap.A new perspective has been open by other 2D materials which …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Chemistry and Physics
- Research centre(s)
- Centre for Materials Science
Supercapacitor with 2D vertical heterostructure electrodes
Supercapacitor is a promising energy storage device with advantages of high power density, fast charging/discharging rate and long cycling life. However, the energy density of supercapacitor is relatively low as compared to that of other devices such as lithium-ion battery. To improve the energy density, new electrode materials including graphene and metal oxides have been explored for supercapacitor electrodes.Two-dimensional (2D) heterostructures recently offered a compelling solution to enhance the performance of supercapacitors by combining more than one components into a …
- Study level
- PhD
- Faculty
- Faculty of Engineering
- School
- School of Mechanical, Medical and Process Engineering
2D heterostructures for future electronics
The traditional approach to the miniaturisation of electronic devices is coming to a halt. Experts agree that the Moore’s law prediction of doubling the number of transistors per chip every two years will cease to be fulfilled in 2020, as the heat produced in small structures cannot be cooled down quickly enough.However, by reducing the size of the device, the quantum nature of atoms and solids can be turned into an asset. By exploiting the phenomena occurring at these scales, …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Chemistry and Physics
- Research centre(s)
- Centre for Materials Science
Centre for Clean Energy Technologies and Practices
Glassy 2D molecular materials
Modern semiconductor technologies are based on crystalline materials with well-defined physical and electronic structures.However, molecular materials, such as organic semiconductors, may present interesting opportunities through disordered structures.The focus of this project will be on conjugated 2D materials without long-range order: molecular glasses. Through control of the chemical composition, atomic bonding motifs, and lateral size, we will be able to modify the properties of these materials.Our focus will be on synthesising and studying these new materials to better understand the relationship …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Science
- School
- School of Chemistry and Physics
- Research centre(s)
- Centre for Materials Science
Tailoring 2D materials via interface engineering
2D materials are crystalline materials with only a single layer thickness. The best known 2D materials is graphene, but it also encompasses a large family of materials , such as transition metal dichalcogenides (TMDCs).2D materials are set for breakthroughs in fundamental research and transformative technologies. They have few surface dangling bonds and unique atomic-level uniformity which make them very appealing for developing optical, electronic and energy applications.These materials also bring a new degree of freedom to combine highly distinct materials, …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Chemistry and Physics
- Research centre(s)
- Centre for Materials Science
Epitaxial growth of 2D heterostructures for two dimensional electronics
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Chemistry and Physics
- Research centre(s)
- Centre for Materials Science
Time-series analysis of 2D diffraction patterns for Synchrotron rock physics
The interaction between deformation, fluid flow, chemical reactions, and heat flow in rocks constitutes a research frontier in the Earth Sciences. In addition to fundamental academic interest in this subject, there are many applied industrial problems, which require a sound understanding of this coupling. Examples include: the long-term sequestration of carbon dioxide in rocks, the energy-efficient processing of future-mineral resources, the design of unconventional geothermal-energy operations, and the prediction of earthquakes and volcanic eruptions.The advisory team pioneered new methods for …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Science
- School
- School of Earth and Atmospheric Sciences
- Research centre(s)
- Centre for Data Science
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.