QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 3 matching student topics
Displaying 1–3 of 3 results
Two dimensional heterostructures on SiC for new electronics
The present electronic technology is approaching the limit to the smallest circuit element achievable, and the future electronic devices will depend critically on the development of novel approaches. Two dimensional materials seem to offer an exciting perspective, and the advent of graphene (a single layer of carbon atoms in a honeycomb structure) sparked a huge interest, but its application to electronics are limited by the absence of a band gap.A new perspective has been open by other 2D materials which …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Chemistry and Physics
- Research centre(s)
- Centre for Materials Science
Tailoring 2D materials via interface engineering
2D materials are crystalline materials with only a single layer thickness. The best known 2D materials is graphene, but it also encompasses a large family of materials , such as transition metal dichalcogenides (TMDCs).2D materials are set for breakthroughs in fundamental research and transformative technologies. They have few surface dangling bonds and unique atomic-level uniformity which make them very appealing for developing optical, electronic and energy applications.These materials also bring a new degree of freedom to combine highly distinct materials, …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Chemistry and Physics
- Research centre(s)
- Centre for Materials Science
Glassy 2D molecular materials
Modern semiconductor technologies are based on crystalline materials with well-defined physical and electronic structures.However, molecular materials, such as organic semiconductors, may present interesting opportunities through disordered structures.The focus of this project will be on conjugated 2D materials without long-range order: molecular glasses. Through control of the chemical composition, atomic bonding motifs, and lateral size, we will be able to modify the properties of these materials.Our focus will be on synthesising and studying these new materials to better understand the relationship …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Science
- School
- School of Chemistry and Physics
- Research centre(s)
- Centre for Materials Science
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.