QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 7 matching student topics
Displaying 1–7 of 7 results
Characterising a DNA repair protein as an anti-cancer therapeutic target and diagnostic marker in brain cancer
Cancer is the single biggest clinical problem facing the world and will account for half of all global deaths by 2030. Even though there have been significant advances in immunotherapy, we are still unable to cure most cancers. New therapeutic targets, individualised to patient needs, must be identified and validated in order to improve cancer outcomes.Brain cancer causes more deaths in people under the age of 40 than any other cancer and more deaths in children than any other disease. …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
- Research centre(s)
- Centre for Genomics and Personalised Health
Characterise a novel DNA repair protein as a target for cancer therapies
Data generated in the lab has identified a novel DNA repair protein previously described as a key protein in HSP70/90 complexes. Many pathways of tumourigenesis are mediated by Heat Shock Proteins and HSP70/90 are found significantly upregulated in ovarian cancers. The targeting of HSP70/90 are an emerging therapeutic avenue for the treatment of ovarian cancer. Supporting this, an inhibitor of HSP90 has been shown to sensitise breast cancer cells to PARP inhibitors and paclitaxel.Our preliminary data indicates that this new …
- Study level
- Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Understanding the genetics of melanoma susceptibility: many roads lead to DNA repair
Repair of the damage caused by mutagens such as UV and reactive oxygen species is vital to prevent cancer and premature aging and accordingly cells have developed a suite of intricate and specific DNA repair pathways. Loss or abnormal function of components of these pathways lead to cancer pre-disposition syndromes for example breast cancer in individuals carrying mutations in the BRCA1 or BRCA2 genes. Understanding the complexities of these DNA repair pathways is vital to efforts aimed at preventing or …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Characterising the role of PARPs in DNA repair and cancer therapy
The genome of our cells is damaged multiple times each day, by various factors including sunlight and reactive oxygen species. In order for the DNA damage response to be efficient, our cells utilise highly coordinated repair pathways that function accurately and rapidly throughout the damaged cell. Cells that do not repair DNA damage correctly will accumulate damage and display increased genomic instability, which is a key hallmark of cancer cells, promoting their survival and rapid growth. DNA repair pathways are …
- Study level
- Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Understanding the role of the hSSB1 protein in the response to UV induced DNA damage
Melanoma is the 4th most common cancer in Australia. The link between skin cancer and UV exposure is now well established. If a DNA damage induced by UV exposure is left unrepaired, the mutation generated in the genome can lead to cell death or cancer. It is thus highly important to understand of how a cell can repair DNA damage. The main pathway to repair UV DNA damaged is the nucleotide excision repair pathway (NER) (Kamileri I. et al, Trends …
- Study level
- Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Investigating DNA repair mechanisms in aging adult stem cells
When we age the DNA repair systems of our cells become down regulated. This results in reduced DNA repair capacity, enhanced rates of mutation load and may lead to the development of chronic aging-associated diseases including osteoporosis, Alzheimer's and cancer(1). So it is no surprise that genome instability and stem cell exhaustion, which also strongly correlates with the accumulation of DNA damage, are considered hallmarks of aging(2).However, we still lack a clear understanding on how the decrease in DNA repair …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Dissecting the molecular and cellular basis of melanoma susceptibility
Several factors strongly influence an individual’s chance of developing melanoma. Paramount amongst these are the number of moles (nevi) present on the skin, cumulative levels of UV exposure and skin pigmentation phenotype. Numerous Genome Wide Association Studies (GWAS) we have identified gene variants at a number of loci that are strongly associated with cutaneous nevi (mole) counts, UV damage response and accordingly susceptibility of individuals to develop melanoma. Currently the functional impact of genetic variants in the genes IRF4, PLA2G6 …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.