QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 3 matching student topics

Displaying 1–3 of 3 results

Modelling of electrochemical CO2 capture and conversion

Renewable electricity is remarkably cheap, and is only going to get cheaper. However, existing state-of-the-art CO2 capture and conversion processes use thermal energy (typically generated by burning natural gas). This modelling project will investigate electrochemical techniques for capturing CO2 from air (direct air capture) and converting it to useful chemicals and materials.

Study level
PhD
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering

Advanced materials for redox flow batteries

Grid-scale energy storage for intermittent renewables like solar and wind is an essential element of the transition away from fossil fuel based electricity production. Redox flow batteries have some very interesting characteristics for this stationary storage application:they are safer than other battery typesthe amount of energy stored can typically be scaled up easilythe power and energy of a system are more decoupled compared to lithium and other batteries, making them flexible in their design parameters.Ion exchange membrane and electrode are …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Atomic-scale identification of catalyst active sites using electrochemical scanning tunneling microscopy

Catalysts have an important role to play in electrochemical reactions. By reducing the energy required for a reaction, they can save electricity and make feasible the reactions that will enable future sustainable technologies, such as the evolution of hydrogen from water. Optimisation of catalysts requires a detailed mechanistic understanding of their function. A key aspect of this is determining, at the atomic scale, the reactive sites on the catalyst surface. This type of insight can be provided by performing atomic-scale …

Study level
Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Page 1 of 1

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.