QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 57 matching student topics
Displaying 1–12 of 57 results
Information retrieval and coding methods for large scale bioinformatics
Advances in sequencing technologies over the past two decades have led to an explosion in the availability of genomic sequence data and an increasingly urgent need for scalable clustering and search facilities. One approach is to encode sequences as binary vectors in a high-dimensional space, simplifying the comparison and allowing it to be computed very rapidly using bit-level operations.Coupled with these ideas is the need to provide clustering methods and efficient indexing and lookup in response to search queries. One …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
- Research centre(s)
- Centre for Data Science
Overcoming the challenges of sensitive data via synthetic data generation (case study)
In the 21st Century, there is an abundance of data, often containing insights that could benefit a number of stakeholders. However, despite this opportunity, it is often the case that the data is sensitive and can not be released by organisations or government agencies due to privacy concerns. One possible solution to the above dilemma is to instead carefully construct a 'twin' data set that contains similar information (and ideally, the same insights) as the original data set, but without …
- Study level
- Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Multi-modal sentiment analysis
In deep learning models, language models and word embedding methods have become popular to understand the context of text data. Popular language models such as BERT have limitations in terms of the token length. There exist some corpora that have longer text with an average of 1000 tokens. Additionally, these corpora are text-heavy and only include some images.In our prior works, we have developed several multi-modality models on social media datasets.
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
- Research centre(s)
- Centre for Data Science
Evaluation of language models and word embedding methods for natural language processing applications
In deep learning models, language models and word embedding methods have become popular to understand the context of text data. There exist many variants of these methods and have different limitations. This project will introduce you to the hot topic of language models and the fields of Natural Language Processing and Text Mining.
- Study level
- Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
- Research centre(s)
- Centre for Data Science
Automatic Generation of Software Vulnerability Datasets for Machine Learning
In recent years, machine learning has enjoyed profound success in a range of interesting applications such as natural language processing, computer vision and speech recognition. It has been possible mainly due to, in addition to better computing resources, the availability of large amounts of training datasets to these applications. However, in software security research, the lack of large datasets is an open problem that makes it challenging for machine learning to reason about security vulnerabilities found in real-world software. The …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Science
- School
- School of Computer Science
Building explainable and trustworthy intelligent systems
Existing machine learning-based intelligent systems are autonomous and opaque (often considered “black-box” systems), which has led to the lack of trust in AI adoption and, consequently, the gap between machine and human being.In 2018, the European Parliament adopted the General Data Protection Regulation (GDPR), which introduces a right of explanation for all human individuals to obtain “meaningful explanations of the logic involved” when a decision is made by automated systems. To this end, it is a compliance that an intelligent …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Information Systems
- Research centre(s)
- Centre for Data Science
Productive reproducible workflows for deep learning-enabled large-scale industry systems
Deep learning is a mainstream to increase the capability of industry systems, particularly for those with massive data input and output. It is seen that many tools are now claimed to be freely available and could facilitate such process of development and deployment significantly with scalability and quality.However, limited attention has been on developing reproducible and productive workflows to identify the tools and their values towards large-scale industry systems. In this project, we will explore how to design such a …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Science
- School
- School of Computer Science
Systematic evaluation towards the analysis of open-source supply chain on ML4SE tasks
Applying machine learning algorithms to source code related SE task is rapidly developing and attracts the attention from both researchers and industry engineers. While there are many program languages available, applying such techniques, i.e., the representation learning models, for different languages may achieve different performance. Particularly, they all have their own strict syntax, which determines the abstract syntax tree. Thus, a lot of different open-source supply chain are available, for example the parsing tools are used to build AST from …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Science
- School
- School of Computer Science
Fine-grained software vulnerability detection using deep learning techniques
Software vulnerability is a major threat to the security of software systems. Thus, the successful prediction of security vulnerability is one of the most effective attack mitigation solutions. Existing approaches for software vulnerability detection (SVD) can be classified into static and dynamic methods. Powered by AI capabilities, especially with the advancement of machine learning techniques, current software has been produced with more sophisticated methodologies and components. This has made the automatic vulnerability proneness prediction even more challenging. Recent research efforts …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Science
- School
- School of Computer Science
Explainable AI-enabled predictive analytics
Modern predictive analytics underpinned by AI-enabled learning (such as machine learning, deep learning) techniques has become a key enabler to the automation of data-driven decision making. In the context of process monitoring and forecast, predictive analytics has been applied to making predictions about the future state of a running process instance - for example, which task will be carried out next, when and who will perform the task, when will an ongoing process instance complete, what will be the outcome …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Information Systems
- Research centre(s)
- Centre for Data Science
Representation learning for anti-microbial resistance
This project is about using neural network models help us understand Anti-Microbial Resistance (AMR), a phenomenon in which bacteria adapt to reduce the effectiveness of antibiotics, usually through a process known as Lateral or Horizontal Gene Transfer - where genes are included in the organism from other sources.Our focus will be on learning compact vector representations of biological sequences known to be associated with AMR genes. By encoding DNA sequences in this way we can more rapidly identify AMR genes …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
- Research centre(s)
- Centre for Data Science
Sport AI
Videos of sport activities are widely available at large scales. AI and its sub-fields, especially computer vision and machine learning, have a great potential to analyse, understand and extract useful information from these videos.This project aims at using AI and its subfields in computer vision and machine learning to develop techniques for analysing sport videos to extract intelligence for players and coaches.
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Engineering
- School
- School of Electrical Engineering and Robotics
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.