QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 58 matching student topics

Displaying 25–36 of 58 results

Investigating the application of sustainable AI practices in construction

The construction industry plays a vital role in the global economy and there is a growing interest in utilising artificial intelligence (AI) to improve its productivity and efficiency. Despite the industry's significant contribution to the economy, it has faced challenges such as large cost overruns, extended schedules, and quality concerns. Nevertheless, AI is making significant strides to remove these issues by revolutionising various aspects of the construction industry. This is evident from enhancing project planning and design to improving construction …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Architecture and Built Environment

Physics-informed machine learning

Recent advances in computer vision have demonstrated superhuman performance on a variety of visual tasks including image classification, object detection, human pose estimation and human analysis. However, current approaches for achieving these results center around models that purely learn from large-scale datasets with highly complex neural network architectures. Despite the impressive performance, pure data-driven models usually lack robustness, interpretability, and adherence to physical constraints or commonsense reasoning.As in the real world, the visual world of computer vision is governed by …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Mapping the world: understanding the environment through spatio-temporal implicit representations

Accurately mapping large-scale infrastructure assets (power poles, bridges, buildings, whole suburbs and cities) is still exceptionally challenging for robots.The problem becomes even harder when we ask robots to map structures with intricate geometry or when the appearance or the structure of the environment changes over time, for example due to corrosion or construction activity.The problem difficulty is increased even more when sensor data from a range of different sensors (e.g. lidars and cameras, but also more specialised hardware such as …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics
Research centre(s)
Centre for Robotics

Productive reproducible workflows for deep learning-enabled large-scale industry systems

Deep learning is a mainstream to increase the capability of industry systems, particularly for those with massive data input and output. It is seen that many tools are now claimed to be freely available and could facilitate such process of development and deployment significantly with scalability and quality.However, limited attention has been on developing reproducible and productive workflows to identify the tools and their values towards large-scale industry systems. In this project, we will explore how to design such a …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Science
School
School of Computer Science

Systematic evaluation towards the analysis of open-source supply chain on ML4SE tasks

Applying machine learning algorithms to source code related SE task is rapidly developing and attracts the attention from both researchers and industry engineers. While there are many program languages available, applying such techniques, i.e., the representation learning models, for different languages may achieve different performance. Particularly, they all have their own strict syntax, which determines the abstract syntax tree. Thus, a lot of different open-source supply chain are available, for example the parsing tools are used to build AST from …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Science
School
School of Computer Science

Fine-grained software vulnerability detection using deep learning techniques

Software vulnerability is a major threat to the security of software systems. Thus, the successful prediction of security vulnerability is one of the most effective attack mitigation solutions. Existing approaches for software vulnerability detection (SVD) can be classified into static and dynamic methods. Powered by AI capabilities, especially with the advancement of machine learning techniques, current software has been produced with more sophisticated methodologies and components. This has made the automatic vulnerability proneness prediction even more challenging. Recent research efforts …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Science
School
School of Computer Science

Information retrieval and coding methods for large scale bioinformatics

Advances in sequencing technologies over the past two decades have led to an explosion in the availability of genomic sequence data and an increasingly urgent need for scalable clustering and search facilities. One approach is to encode sequences as binary vectors in a high-dimensional space, simplifying the comparison and allowing it to be computed very rapidly using bit-level operations.Coupled with these ideas is the need to provide clustering methods and efficient indexing and lookup in response to search queries. One …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Computer Science
Research centre(s)
Centre for Data Science

Overcoming the challenges of sensitive data via synthetic data generation (case study)

In the 21st Century, there is an abundance of data, often containing insights that could benefit a number of stakeholders. However, despite this opportunity, it is often the case that the data is sensitive and can not be released by organisations or government agencies due to privacy concerns. One possible solution to the above dilemma is to instead carefully construct a 'twin' data set that contains similar information (and ideally, the same insights) as the original data set, but without …

Study level
Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science

Multi-modal sentiment analysis

In deep learning models, language models and word embedding methods have become popular to understand the context of text data. Popular language models such as BERT have limitations in terms of the token length. There exist some corpora that have longer text with an average of 1000 tokens. Additionally, these corpora are text-heavy and only include some images.In our prior works, we have developed several multi-modality models on social media datasets.

Study level
Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Computer Science
Research centre(s)
Centre for Data Science

Evaluation of language models and word embedding methods for natural language processing applications

In deep learning models, language models and word embedding methods have become popular to understand the context of text data. There exist many variants of these methods and have different limitations. This project will introduce you to the hot topic of language models and the fields of Natural Language Processing and Text Mining. 

Study level
Honours
Faculty
Faculty of Science
School
School of Computer Science
Research centre(s)
Centre for Data Science

Automatic Generation of Software Vulnerability Datasets for Machine Learning

In recent years, machine learning has enjoyed profound success in a range of interesting applications such as natural language processing, computer vision and speech recognition. It has been possible mainly due to, in addition to better computing resources, the availability of large amounts of training datasets to these applications. However, in software security research, the lack of large datasets is an open problem that makes it challenging for machine learning to reason about security vulnerabilities found in real-world software. The …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Science
School
School of Computer Science

Building explainable and trustworthy intelligent systems

Existing machine learning-based intelligent systems are autonomous and opaque (often considered “black-box” systems), which has led to the lack of trust in AI adoption and, consequently, the gap between machine and human being.In 2018, the European Parliament adopted the General Data Protection Regulation (GDPR), which introduces a right of explanation for all human individuals to obtain “meaningful explanations of the logic involved” when a decision is made by automated systems. To this end, it is a compliance that an intelligent …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Information Systems
Research centre(s)
Centre for Data Science

Page 3 of 5

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.