QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 3 matching student topics

Displaying 1–3 of 3 results

Unlocking the Potential of Simplex-Truncated Distributions

This PhD project aims to develop new methods for generating random samples from a specific type of probability distributions called simplex-truncated distributions. These distributions are commonly used in various fields such as statistics, machine learning, and biology.The project will involve the development of new techniques to generate random samples from simplex-truncated distributions. These techniques are based on a method called continuous-time Monte Carlo which is a cutting edge method in statistics that can generate random samples from complex distributions.The main …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science

Statistics via scalable Monte Carlo

Monte Carlo methods use random sampling to approximate solutions to challenging problems. These methods are helpful for statistical models with many parameters, as discussed in this short video. The methods are particularly useful for Bayesian inference where one wishes to get a rigorous understanding of parameter uncertainty.Despite having many advantages over their competitors, Monte Carlo methods can be very slow in the context of big data. In this project, you'll help develop scalable Monte Carlo methods to enable timely and …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science

Scalable Bayesian Inference using Multilevel Monte Carlo

Bayesian inference is a popular statistical framework for estimating the parameters of statistical models based on data. However, Bayesian methods are well known to be computationally intensive. This fact inhibits the scalability of Bayesian analysis for real-world applications involving complex stochastic models. Such models are common in the fields of biology and ecology.Multilevel Monte Carlo (MLMC) methods are a promising class of techniques for dealing with the scalability challenge. These approaches use hierarchies of approximations to optimise the trade-off between …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science

Page 1 of 1

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.