QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 3 matching student topics
Displaying 1–3 of 3 results
Targeting leptin's signalling axis to prevent treatment resistance in prostate cancer
Advanced prostate cancer (PCa) is a leading cause of cancer-associated death in Australian men. Anti-androgens, which exploit the tumour’s reliance on androgens for its growth & spread, offer temporary remission in advanced PCa patients, but due to treatment resistance, fail to be curative. A further complication of anti-androgens is that they trigger a deleterious suite of metabolic side-effects resembling obesity/Metabolic syndrome. These symptoms not only impact patient health but promote tumours to be more aggressive & resist treatment. Vital new …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Restoring adiponectin signalling to prevent prostate cancer progression
Advanced prostate cancer (PCa) is a leading cause of cancer-associated death in Australian men. Anti-androgens, which exploit the tumour’s reliance on androgens for its growth and spread, offer temporary remission in advanced PCa patients, but due to treatment resistance, fail to be curative. A further complication of anti-androgens is that they trigger a deleterious suite of metabolic side-effects resembling obesity/Metabolic syndrome. These symptoms not only impact patient health but promote the tumour to be more aggressive and resist treatment. Vital …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Development of bioengineered 3D tumour models for preclinical breast cancer research
3D organoid model technologies have led to the development of innovative tools for precision medicine in cancer treatment. Yet, the lack of resemblance to native tumours, and the limited ability to test drugs in a high-throughput mode, has limited translation to practice.This project will progress organoid models by using advanced tissue engineering technologies and high-throughput 3D bioprinting to recreate 'mini-tumours-in-a-dish' from a patient’s own tumour cells, and study the effects of various components of the tumour microenvironment on drug response.In …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
- Research centre(s)
- Centre for Biomedical Technologies
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.