QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 488 matching student topics
Displaying 205–216 of 488 results
Developing predictive models, methods and analytics for complex sports data
A 3-year strategic partnership on sports data science between the Centre for Data Science (CDS), the Australian Institute of Sport (AIS) and the Queensland Academy of Sport (QAS) was launched in the past few months. With a drive towards data informed decision making across the high performance sports network nationally, a number of collaborative, interdisciplinary research and scholarship opportunities ranging from VRES, to honours, masters and PhD have developed.
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Mathematical modelling of ecosystem feedbacks and value-of-information theory
Ecosystems respond to gradual change in unexpected ways. Feedback processes between different parts of an environment can perpetuate ecosystem collapse, leading to potentially irreversible biodiversity loss. However, it is unclear if greater knowledge of feedbacks will ultimately change environmental decisions.The project aims to identify when feedbacks matter for environmental decisions, by generating new methods that predict the economic benefit of knowing more about feedbacks. Combining ecological modelling and value-of-information theory, the outcomes of these novel methods will provide significant and …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Centre for the Environment
Addressing security challenges for the industrial internet of things
With the emergence of the Internet of Things (IoT) and Industry 4.0, there is a trend for applying these services and applications to a large-scale industrial area. The IoT paradigm has changed the way of interactions with the things that surround us. In essence, the IoT promises ubiquitous connection to the Internet, turning common objects into connected devices. It is predicted that there will be 50 billion connected devices at the end of the year 2022.Over the last few years, …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
Optimal ecosystem management in rapidly changing systems
Delays in acting in collapsing ecosystems can be catastrophic. With every passing year, the chances that the ecosystem has progressed past some point of no return increases. Yet the research and development needed to develop a new technology can take a long time. Balance between these two dynamic processes is needed to determine the optimal length and effort for developing new technologies. This project will develop a method for finding the optimal schedule for developing technological readiness, social acceptability, a …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Centre for the Environment
Hierarchical visualisation of large social networks
Networks have been extensively used to capture social interactions, by representing individuals as nodes and their relationships as edges.Such networks have been used to model the spread of epidemics. A few nodes are 'infected', and over time they gradually infect their neighbours on the network, who in turn infect their neighbours, etc. This type of model can then be used to simulate different intervention strategies aimed at containing outbreaks.However, an important limitation is the difficulty to visualise these networks when …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
- Research centre(s)
- Centre for Data Science
Modelling and managing uncertain Antarctic species networks
Antarctic ecosystems are complex, and data is limited since it is expensive to collect. Species interact in food webs which can be modelled as mathematical networks. The relationships between species are not always known, or we might know they interact but not how strongly. Noisy (or imperfect) data can be used to model these species interactions to give more certainty about how the ecosystem works as a whole – although the worse the data is, the less information it contributes. …
- Study level
- Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Centre for the Environment
Conservation is a noisy business: modelling the effects of stochasticity on wildlife management decisions
To conserve species in disturbed natural environments, we need to use mathematical models to predict the consequences of different interventions. Unfortunately, these models are based on partial information of complex systems, and the systems themselves are subject to substantial observational and process noise.We often use ordinary differential equations to describe ecosystems, like the classic logistic growth model:dn/dt = r n (1 - n / k)However, these models are deterministic, and they assume we know the values of the key parameters …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Centre for the Environment
Semantic-based source code embeddings for software vulnerability discovery
Operational Technology (OT) is a field of computing which is becoming increasingly prominent in modern society. It is responsible for a variety of critical services, especially in industrial contexts, including power generation, manufacturing, transport, and many others. This important role makes OT an especially tempting target for malicious attackers. In order to counter this, tools must be developed to locate vulnerabilities and flaws in OT software systems before attacks can be launched. Vulnerability discovery in computer software systems including OT …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
- Research centre(s)
- Centre for Data Science
Developing composite products for use in light steel wall and floor systems
The project will investigate the potential use of a range of composite products made of gypsum plasterboard, steel sheeting and insulation foams to improve the fire resistance of light steel wall and floor systems. It will involve investigating the potential composite products’ suitability, conducting fire tests of small scale wall/floor assemblies (1.2mx.1.2m) made of such composite products to understand how they behave in fire and determine their fire resistance levels. Civil and Mechanical Engineering students with interest in structural and …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Engineering
- School
- School of Civil and Environmental Engineering
Bushfire design of residential buildings
This project aims to investigate the bushfire performance of residential buildings in the bushfire-prone areas of Australia. This includes a detailed review of:bushfire characteristicsradiant and convective heat ratestype of materials used to construct bushfire safe housesstructural and fire performance of external wall and roof panelsstructural and architectural building design requirementsThis comprehensive review will contribute towards developing conceptual models and design methods for external wall and roof systems for residential buildings in bushfire zones.
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Engineering
- School
- School of Civil and Environmental Engineering
- Research centre(s)
- Centre for Materials Science
AI-Based Data Analysis on Multiple Imaging Modalities
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. According to the World Health Organization (WHO), it is estimated CVD takes 17.9 million lives every year. In Australian, the statistical data from the Australia Heart Foundation shows CVD is a major cause of death in Australia. It occupies 26% of all deaths, responsible for an average 118 deaths every day. Four of the main types of CVD are coronary heart disease, strokes and transient ischaemic attack, peripheral …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
- Research centre(s)
- Centre for Data Science
Data reasoning to extend domain knowledge in deep learning
A wide variety of companies now use personalized prediction models to improve customer satisfaction, for example, detecting cancer relapses, Detecting Attacks in Networks (e.g., SDN) or understanding Customer Online Shopping Behaviour. However, the dramatic increase in size and complexity of newly generated data from various sources is creating a number of challenges for domain experts to make personalized prediction.For example, early detection of cancer can drastically improve the chance and successful treatment. Recently, supervised deep learning has brought breakthroughs in …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
- Research centre(s)
- Centre for Data Science
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.