QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 488 matching student topics

Displaying 49–60 of 488 results

Unified def-site and use-site security policies for component-based software systems

Securing the information manipulated by computer systems, such as privacy and integrity in social software, is a challenge. Traditional methods to impose limits on the information disclosure, such as access control lists, firewalls, and cryptography, provide no guarantees about information propagation. For instance, cryptography provides no guarantees about the confidentiality of the data are given once it is decrypted.Information flow control (IFC) is the problem of ensuring secure information flow according to specified policies within computer systems. Modern applications are …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Science
School
School of Computer Science

Productive reproducible workflows for deep learning-enabled large-scale industry systems

Deep learning is a mainstream to increase the capability of industry systems, particularly for those with massive data input and output. It is seen that many tools are now claimed to be freely available and could facilitate such process of development and deployment significantly with scalability and quality.However, limited attention has been on developing reproducible and productive workflows to identify the tools and their values towards large-scale industry systems. In this project, we will explore how to design such a …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Science
School
School of Computer Science

Systematic evaluation towards the analysis of open-source supply chain on ML4SE tasks

Applying machine learning algorithms to source code related SE task is rapidly developing and attracts the attention from both researchers and industry engineers. While there are many program languages available, applying such techniques, i.e., the representation learning models, for different languages may achieve different performance. Particularly, they all have their own strict syntax, which determines the abstract syntax tree. Thus, a lot of different open-source supply chain are available, for example the parsing tools are used to build AST from …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Science
School
School of Computer Science

Fine-grained software vulnerability detection using deep learning techniques

Software vulnerability is a major threat to the security of software systems. Thus, the successful prediction of security vulnerability is one of the most effective attack mitigation solutions. Existing approaches for software vulnerability detection (SVD) can be classified into static and dynamic methods. Powered by AI capabilities, especially with the advancement of machine learning techniques, current software has been produced with more sophisticated methodologies and components. This has made the automatic vulnerability proneness prediction even more challenging. Recent research efforts …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Science
School
School of Computer Science

Data-driven and process-aware workforce analytics

Modern information systems in today’s organisations record massive amount of event log data capturing the execution of day-to-day core processes within and across organisations. Mining these event log data to drive process analytics and knowledge discovery is known as process mining. To date various process mining techniques have been developed to help extract insights about the actual processes with the ultimate goal to organisations' workforce capability and capacity building.As an important sub-field of process mining, organisational mining focuses on discovering …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Information Systems
Research centre(s)
Centre for Data Science

Explainable AI-enabled predictive analytics

Modern predictive analytics underpinned by AI-enabled learning (such as machine learning, deep learning) techniques has become a key enabler to the automation of data-driven decision making. In the context of process monitoring and forecast, predictive analytics has been applied to making predictions about the future state of a running process instance - for example, which task will be carried out next, when and who will perform the task, when will an ongoing process instance complete, what will be the outcome …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Information Systems
Research centre(s)
Centre for Data Science

Semantic based onboard UAV navigation

In recent years the field of robotic navigation has increasingly harnessed semantic information in order to facilitate the planning and execution of robotic tasks. The use of semantic information focuses on employing representations more understandable by humans to accomplish tasks with robustness against environmental change, limiting memory requirements and improving scalability. Contemporary computer vision algorithms extracting semantic information have continuously improved their performance on benchmark datasets, however, most computations are expensive, limiting their use for robotic platforms constrained by size, …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Investigating factors impacting urban heat vulnerability in subtropical cities

In recent years, with the rise in climate change impact, urban heat has become a major issue for many cities to tackle consequently. Extreme heat events are becoming more frequent and intense due to climate change, which has directly caused a substantial increase in heat-related morbidity and mortality. This indispensably puts an extra burden on medical systems and national finance. Meanwhile, the urban heat island effect has been exaggerating the consequences caused by the increased extreme heat in metropolitan areas. …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Architecture and Built Environment

The dark side of robotic process automation

Pandemics such as COVID 19 have forced organisations to pursue hyper-automation to maintain operational sustainability. Many organisations are keen to adopt Robotic Process Automation (RPA) to dramatically improve operational efficiency. However, evidence to date highlighted various associated challenges associated with adoption of RPA in organisations.Furthermore, recent surveys by consultant organisations found a high RPA project fail rate and their inability to meet the expected return on investment.

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Information Systems
Research centre(s)
Centre for Future Enterprise

Alleviating corruption: a data driven perspective

Corruption is cited as among the greatest challenges faced by government and citizenry the world over and threatens to undermine the very trust that is essential for a functioning democratic society. In order to earn and maintain public trust, governments at all levels must continuously strive to reduce corruption and uphold the highest levels of integrity.Amidst the countless human interactions and electronic transactions that occur within the public service on a daily basis are a complex and ever-changing variety of …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Information Systems
Research centre(s)
Centre for Data Science

Understanding responsible deployment of computer vision for urban planning

Advances in artificial intelligence (AI) offer urban planning practice many novel prospects. By the responsive use of AI, planners can effectively analyse data, improve processes, increase efficiency, and prioritise human-centric aspects of planning to develop sustainable cities. Computer vision is one of the key areas where responsible AI is applied in urban planning to revolutionise the analysis and interpretation of visual data, like images and videos captured in cities to aid decision and plan making processes. While the potential impacts …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Architecture and Built Environment

Parameter identifiability for stochastic processes in biological systems

Stochastic models are used in biology to account for inherent randomness in many cellular processes, for example gene regulatory networks. Noise is often thought to obscure information, however, there is an increasing understanding that some randomness contains vitally important information about underlying biological processes.When applying these models to interpret and learn from data, unknown parameters in the model need to be estimated. However, not all data will contribute to a given estimation task regardless of the data quantity and quality. …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science

Page 5 of 41

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.