QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 6 matching student topics
Displaying 1–6 of 6 results
Bio-inspired design to create strong and toughness composites
A fundamental challenge to materials design for mechanical capability is to attain both strength and toughness at the same time in one body. Conventional metallic materials generally have relatively large plasticity due to having massive population of microstructural defects and effective plastic deformation mechanism, which have long been exploited for fabricating flaw tolerant (toughness) materials for structural applications. By the same token theseStructural defects render the materials relatively low strength, thus low load-bearing capability. In contrast, ceramics and intermetallic compounds …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Engineering
- School
- School of Mechanical, Medical and Process Engineering
- Research centre(s)
- Centre for Materials Science
Development composite electrode for next generation Li-ion batteries
Australia is rich in lithium battery materials and is poised to be the world leader in sustainable energy storage. The rapid growth in the automobile and energy sector created greater demand for high-performance Li-ion batteries with high energy density. Conventional Li-ion batteries utilise a graphite anode with a limited theoretical capacity. Therefore, we need to develop alternative electrode materials with high energy density and a longer lifespan.Silicon (Si) has received attention owing to its high specific capacity at ambient temperature. …
- Study level
- PhD
- Faculty
- Faculty of Engineering
- School
- School of Mechanical, Medical and Process Engineering
- Research centre(s)
- Centre for Materials Science
Advanced materials for redox flow batteries
Grid-scale energy storage for intermittent renewables like solar and wind is an essential element of the transition away from fossil fuel based electricity production. Redox flow batteries have some very interesting characteristics for this stationary storage application:they are safer than other battery typesthe amount of energy stored can typically be scaled up easilythe power and energy of a system are more decoupled compared to lithium and other batteries, making them flexible in their design parameters.Ion exchange membrane and electrode are …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Chemistry and Physics
- Research centre(s)
- Centre for Materials Science
Advanced materials for supercapacitors
Energy storage devices, such as supercapacitors, play an increasingly important role in our daily life as a reliable energy supplier. Supercapacitors are a type of energy storage system that possess merits of rapid energy storage and release (high power density) with a cycling lifetime of ten thousand or more. Nevertheless the energy density of conventional electrochemical capacitor is quite low.This project aims to enhance the energy density of supercapacitor by designing and synthesising nanostructured materials using transition metals.
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Chemistry and Physics
- Research centre(s)
- Centre for Materials Science
Centre for Clean Energy Technologies and Practices
Advanced materials for perovskite solar cells
Solar cells using metal halides perovskite materials to absorb light is one of the most important scientific discoveries. These cells have the potential to provide cost-effective solar electricity in the future. In the last decades, perovskite solar cells (PSCs) demonstrated unprecedented progress towards this goal. This technology holds the world record for energy conversion efficiency and is comparable to commercial crystalline silicon, but at a much lower cost.Currently their instability and use of toxic lead are key issues that restrict …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Chemistry and Physics
- Research centre(s)
- Centre for Materials Science
Centre for Clean Energy Technologies and Practices
Advanced materials for perovskite solar cells
Solar cells using metal halides perovskite materials to absorb light is one of the most important scientific discoveries. These cells have the potential to provide cost-effective solar electricity in the future. In the last decades, perovskite solar cells (PSCs) demonstrated unprecedented progress towards this goal. This technology holds the world record for energy conversion efficiency and is comparable to commercial crystalline silicon, but at a much lower cost.Currently their instability and use of hazardous solvents and toxic lead are key …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Chemistry and Physics
- Research centre(s)
- Centre for Materials Science
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.