QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 3 matching student topics
Displaying 1–3 of 3 results
Characterisation of melanoma cell membranes to identify novel drug targets
Cell membrane structure and function are altered during tumour development, but to date comprehensive studies on the characterisation of cell membranes of a given cancer are scarce, or are only focused on a particular property (e.g. overall charge, global lipid composition, or specific lipid). In preliminary work we compared the lipidome (i.e. the lipid profile) of a panel of cells, and found the lipid composition of model melanoma cells to be distinct from that of other cancerous and non-cancerous cells. …
- Study level
- PhD
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Identification of novel melanoma biomarkers using exosomes
Tumour cells excrete exosomes, membrane vesicles (30-150 nm diameter) that encapsulate and transport proteins, metabolites and genetic material. They mediate intercellular communication within the tumor microenvironment, metastasis formation via circulation, and development of drug resistance. Circulating tumor-derived exosomes can be isolated from blood patients as a non-invasive liquid biopsy.The chemical composition and overall properties of the exosomal membranes are expected to be similar to those of parent cell membranes and to modulate blood circulation time, and uptake and targeting of …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Microfluidic chip-based tumor-immune cancer models for biomarker discovery
In-vitro profiling of tumour-immune cell interactions in proximity can provide valuable insight into patient response to new combinatorial immunotherapies that are in the pipeline and currently being tested in clinical trials. These in-vitro models allow for a more controlled and isolated environment and provide a methodical approach for generating quantifiable data characterizing the interactions between target and effector cells. Traditionally executed in well-plates, tumour-immune models have been slowly moving towards a microfluidic chip-based approach for several reasons: better control over …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Engineering
- School
- School of Mechanical, Medical and Process Engineering
- Research centre(s)
- Centre for Biomedical Technologies
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.