QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 25 matching student topics
Displaying 1–12 of 25 results
Computational communication and culture
The Computational Communication and Culture research program within the Digital Media Research Centre investigates how rapid advances in computation and human-machine communication are transforming society, through automation and AI, the Internet of Things, and disintermediating technologies such as blockchain. We draw on and extend computer science and critical humanities theory and methods (including agent-based modelling, machine vision, critical simulation, and information visualisation) to help explore and explain emergent phenomena in the digital media environment, including the fundamental transformation of communication …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Creative Industries, Education and Social Justice
- School
- School of Communication
- Research centre(s)
- Digital Media Research Centre
Diffusion and first passage times in random media
Diffusion in homogenous environments is relatively well understood, but the problem becomes more complicated in complex environments - such as wood tissue, cells, filters and catalysts. At QUT there is extensive expertise in using advanced numerical methods to model diffusions and first passage times in complex environments.The ability to combine this expertise with realistic models of random media based on level-sets of Gaussian random field.
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
Optimisation of piezoelectric materials for robotics applications
Piezoelectricity, which translates to “pressure electricity”, is the phenomenon in which certain materials convert mechanical energy to electrical energy, and vice versa. Such materials are common-place and are used in a variety of applications including sensor, actuator, and energy harvesting technologies. The capabilities of such piezoelectric materials have not yet been fully realised. We plan to use computational structural optimisation to design new piezoelectric materials and components that may contribute to novel sensing technologies for robotics applications. Essentially, robots need …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
Scalable Bayesian Inference using Multilevel Monte Carlo
Bayesian inference is a popular statistical framework for estimating the parameters of statistical models based on data. However, Bayesian methods are well known to be computationally intensive. This fact inhibits the scalability of Bayesian analysis for real-world applications involving complex stochastic models. Such models are common in the fields of biology and ecology.Multilevel Monte Carlo (MLMC) methods are a promising class of techniques for dealing with the scalability challenge. These approaches use hierarchies of approximations to optimise the trade-off between …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Surrogate models for accurate prediction and inference in mathematical biology
High fidelity mathematical models of biological phenomena are often complex and can require long computational runtimes which can make computational inference for parameter estimation intractable. In this project we will overcome this challenge by working with computationally simple low fidelity models and build a simple statistical model of the discrepancy between the high and low fidelity models. This approach provides the best of both worlds: we obtain high accuracy predictions using a computationally cheap model surrogate.
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Simulation of turbulent fluid flow through a microfluidic device using CFD
Microfluidic devices (MFD) are extensively used in microbial studies. Bacterial cell attachment onto surfaces under flow conditions in laminar regime has been previously studied using a custom designed MFD.As an extension of this study, microbial attachment under turbulent flow is to be studied in a future project. The suitability of current MFD for microbial studies under turbulent flow must be evaluated to adopt / redesign the MFD.A computational fluid dynamics (CFD) analysis is proposed to examine the fluid flow inside …
- Study level
- Honours
- Faculty
- Faculty of Engineering
- School
- School of Mechanical, Medical and Process Engineering
Making the most of many models
In the age of Big Data, machine learning methods, and modern statistics the adage "all models are wrong but some are useful" has never been so true. This project will investigate data science approaches where more than one model makes sense for the data. Is it better to choose a single model or is there something to be gained from multiple models?This project will look at variable selection methods, penalised regression, Bayesian model averaging and conformal prediction. The research has …
- Study level
- Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Branching processes, stochastic simulations and travelling waves
Branching processes are stochastic mathematical models used to study a range of biological processes, including tissue growth and disease transmission.This project will implement a simple stochastic branching process to generate simulations of biological growth, and then consider differential equation-based description of the stochastic model.Using computation we will compare the two models, and use phase plane and perturbation analysis to analyze the resulting traveling wave solutions.
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Design, derivation, and implementation of mesh-free finite volume solvers based on 3D unit cell morphology to estimate biomass particle effective parameters
The aim of this PhD project is to use lignocellulosic morphological features extracted from high resolution micro-CT images of biomass particles undergoing a dilute acid pretreatment process to perform computational homogenisation over representative unit cell configurations. Mesh-free finite volume solvers will be developed based on 3D point cloud data sets to estimate virtual biomass particle effective parameters, such as diffusivity, thermal conductivity, and permeability. The simulation results will be analysed to provide a fundamental understanding of the impact that changes …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
Making predictions using simulation-based stochastic mathematical models
Stochastic simulation-based models are very attractive to study population-biology, disease transmission, development and disease. These models naturally incorporate randomness in a way that is consistent with experimental measurements that describe natural phenomena.Standard statistical techniques are not directly compatible with data produced by simulation-based stochastic models since the model likelihood function is unavailable. Progress can be made, however, by introducing an auxiliary likelihood function can be formulated, and this auxiliary likelihood function can be used for identifiability analysis, parameter estimation and …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
How do healthy people sleep? Biomechanics, physiology, and environment - what matters most?
In the Westernized world a person typically spends one third of their life in bed, with more time spent sleeping in a bed than in any other single activity. Sleep amount and quality of sleep have a direct impact on mood, behaviour, motor skills and overall quality of life. Yet, despite how important restful sleep is for the body to maintain good health, there is a comparatively small amount of studies evaluating key multi-factorial and biomechanical determinants of restful sleep …
- Study level
- PhD
- Faculty
- Faculty of Engineering
- School
- School of Mechanical, Medical and Process Engineering
- Research centre(s)
- Centre for Biomedical Technologies
Mathematical and computational techniques for advection diffusion reaction models
Mathematical models of advection diffusion reaction processes are fundamental to many applied disciplines including physics, biology, ecology and medicine. This project will focus on developing mathematical and computational techniques for continuum (PDE) and/or stochastic (random walk) models of advection diffusion reaction.Potential project topics include:building new simplified models that are easier to implement, interpret and analyseextracting new mathematical insights into advection diffusion reaction processesproposing new methods for parameterising models from datadeveloping new numerical and/or analytical methods for solving PDE models.All project …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.