QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 15 matching student topics
Displaying 1–12 of 15 results
Overcoming the challenges of sensitive data via synthetic data generation (case study)
In the 21st Century, there is an abundance of data, often containing insights that could benefit a number of stakeholders. However, despite this opportunity, it is often the case that the data is sensitive and can not be released by organisations or government agencies due to privacy concerns. One possible solution to the above dilemma is to instead carefully construct a 'twin' data set that contains similar information (and ideally, the same insights) as the original data set, but without …
- Study level
- Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Multi-modal sentiment analysis
In deep learning models, language models and word embedding methods have become popular to understand the context of text data. Popular language models such as BERT have limitations in terms of the token length. There exist some corpora that have longer text with an average of 1000 tokens. Additionally, these corpora are text-heavy and only include some images.In our prior works, we have developed several multi-modality models on social media datasets.
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
- Research centre(s)
- Centre for Data Science
Evaluation of language models and word embedding methods for natural language processing applications
In deep learning models, language models and word embedding methods have become popular to understand the context of text data. There exist many variants of these methods and have different limitations. This project will introduce you to the hot topic of language models and the fields of Natural Language Processing and Text Mining.
- Study level
- Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
- Research centre(s)
- Centre for Data Science
Building explainable and trustworthy intelligent systems
Existing machine learning-based intelligent systems are autonomous and opaque (often considered “black-box” systems), which has led to the lack of trust in AI adoption and, consequently, the gap between machine and human being.In 2018, the European Parliament adopted the General Data Protection Regulation (GDPR), which introduces a right of explanation for all human individuals to obtain “meaningful explanations of the logic involved” when a decision is made by automated systems. To this end, it is a compliance that an intelligent …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Information Systems
- Research centre(s)
- Centre for Data Science
Fine-grained software vulnerability detection using deep learning techniques
Software vulnerability is a major threat to the security of software systems. Thus, the successful prediction of security vulnerability is one of the most effective attack mitigation solutions. Existing approaches for software vulnerability detection (SVD) can be classified into static and dynamic methods. Powered by AI capabilities, especially with the advancement of machine learning techniques, current software has been produced with more sophisticated methodologies and components. This has made the automatic vulnerability proneness prediction even more challenging. Recent research efforts …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Science
- School
- School of Computer Science
Explainable AI-enabled predictive analytics
Modern predictive analytics underpinned by AI-enabled learning (such as machine learning, deep learning) techniques has become a key enabler to the automation of data-driven decision making. In the context of process monitoring and forecast, predictive analytics has been applied to making predictions about the future state of a running process instance - for example, which task will be carried out next, when and who will perform the task, when will an ongoing process instance complete, what will be the outcome …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Information Systems
- Research centre(s)
- Centre for Data Science
Mapping the world: understanding the environment through spatio-temporal implicit representations
Accurately mapping large-scale infrastructure assets (power poles, bridges, buildings, whole suburbs and cities) is still exceptionally challenging for robots.The problem becomes even harder when we ask robots to map structures with intricate geometry or when the appearance or the structure of the environment changes over time, for example due to corrosion or construction activity.The problem difficulty is increased even more when sensor data from a range of different sensors (e.g. lidars and cameras, but also more specialised hardware such as …
- Study level
- PhD
- Faculty
- Faculty of Engineering
- School
- School of Electrical Engineering and Robotics
- Research centre(s)
- Centre for Robotics
Investigating the application of sustainable AI practices in construction
The construction industry plays a vital role in the global economy and there is a growing interest in utilising artificial intelligence (AI) to improve its productivity and efficiency. Despite the industry's significant contribution to the economy, it has faced challenges such as large cost overruns, extended schedules, and quality concerns. Nevertheless, AI is making significant strides to remove these issues by revolutionising various aspects of the construction industry. This is evident from enhancing project planning and design to improving construction …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Engineering
- School
- School of Architecture and Built Environment
Re-localisation in natural environments
Re-localisation in robotics involves the process of determining a robot's current pose, consisting of its position and orientation. This can either be within a previously mapped and known environment (i.e. prior map) or relative to another robot in a multi-agent setup. Re-localisation is essential for enabling robots to perform tasks such as autonomous monitoring and exploration seamlessly, even when they encounter temporary challenges in precisely tracking their location in GPS-degraded environments. For instance, consider the 'wake-up' problem, where a robot …
- Study level
- PhD
- Faculty
- Faculty of Engineering
- School
- School of Electrical Engineering and Robotics
Enhancing 3D visual understanding through multimodal data fusion
The demand for 3D scene understanding through point clouds is rapidly growing in diverse applications, including augmented and virtual reality, autonomous driving, robotics, and environment monitoring. However, the field faces challenges due to limited data availability and predefined categories. Training deep 3D networks effectively for sparse LiDAR point clouds requires significant amounts of annotated data, which is both time-consuming and expensive. Building on the advancements in 2D models that leverage the power of image and language knowledge, our project aims …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Engineering
- School
- School of Electrical Engineering and Robotics
Cobot contact tasks through multi-sensory deep learning
Contact tasks like grinding, polishing and assembly require a robot to physically interact with both rigid and flexible objects. Current methods relying on force control have difficulty achieving consistent finishing results and lack robustness in dealing with non-linear dynamics inherent in how the material is handled. This project will take a new approach that detects and diagnoses the dynamical process through deep learning fusion of multi-sensory data, including force/tactile, visual, thermal, sound, and acoustic emission; and generate corrective process parameters …
- Study level
- PhD
- Faculty
- Faculty of Engineering
- School
- School of Electrical Engineering and Robotics
Genome to phenome: exploiting multi-omics and deep learning strategies to decipher importance of isoforms in health and behaviour
The molecular process that leads to multiple mRNA transcripts being produced from the same segment of DNA (aka gene) is known as alternative splicing (AS). This is a common form of regulation in higher eukaryotes, enabling the production of novel protein isoforms, which in turn are known to have a big impact on phenotype. Understanding the regulatory factors involved in AS, including epigenetic mechanisms such as DNA methylation, will offer key insights into important biological phenomena (health disease, behaviour, production). …
- Study level
- PhD
- Faculty
- Faculty of Science
- School
- School of Biology and Environmental Science
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.