QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 15 matching student topics
Displaying 13–15 of 15 results
Data reasoning to extend domain knowledge in deep learning
A wide variety of companies now use personalized prediction models to improve customer satisfaction, for example, detecting cancer relapses, Detecting Attacks in Networks (e.g., SDN) or understanding Customer Online Shopping Behaviour. However, the dramatic increase in size and complexity of newly generated data from various sources is creating a number of challenges for domain experts to make personalized prediction.For example, early detection of cancer can drastically improve the chance and successful treatment. Recently, supervised deep learning has brought breakthroughs in …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
- Research centre(s)
- Centre for Data Science
Interpretable software vulnerability detection using deep learning techniques
Software vulnerabilities have been considered as significant reliability threats to the general public, especially critical infrastructures. Many approaches have been proposed to detect vulnerabilities in source code to avoid any damages they pose when exploited. Conventional approaches include static analysis and dynamic analysis. Static analysis uses pre-defined patterns or vulnerability dataset to scan and examine software source code to identify potential vulnerable code snippets. These patterns are manually crafted or identified by software developers or security experts, which are time-consuming. …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
- Research centre(s)
- Centre for Data Science
Productive reproducible workflows for deep learning-enabled large-scale industry systems
Deep learning is a mainstream to increase the capability of industry systems, particularly for those with massive data input and output. It is seen that many tools are now claimed to be freely available and could facilitate such process of development and deployment significantly with scalability and quality.However, limited attention has been on developing reproducible and productive workflows to identify the tools and their values towards large-scale industry systems. In this project, we will explore how to design such a …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Science
- School
- School of Computer Science
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.