QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 468 matching student topics

Displaying 145–156 of 468 results

Safe autonomous driving through dense vegetation via advanced perception

One of the remaining challenges to achieve off-road autonomous navigation for mobile robots is the accurate evaluation of vegetated environments, to determine where a robot can safely drive through. To achieve this, robots may use extra sensory modalities compared to humans, such as RADARs that can penetrate through vegetation and see behind it what is not visible to the naked eye. Another option is to physically interact with the environment to 'clear the way'.

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Cobot contact tasks through multi-sensory deep learning

Contact tasks like grinding, polishing and assembly require a robot to physically interact with both rigid and flexible objects. Current methods relying on force control have difficulty achieving consistent finishing results and lack robustness in dealing with non-linear dynamics inherent in how the material is handled. This project will take a new approach that detects and diagnoses the dynamical process through deep learning fusion of multi-sensory data, including force/tactile, visual, thermal, sound, and acoustic emission; and generate corrective process parameters …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Robotic maintenance of equipment

Think about the problem of maintaining equipment at remote work sites.  How can robotic technology help human maintenance staff to work more safely and productively?

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Outdoor litter collection

Cleanup Australia day in 2019 collected 17,000 ute loads of rubbish from rivers, parks, beaches, roadways and bushland.  Imagine a robot ground vehicle or boat that could identify litter, plan the motion of the robot so that it can pick up items in the right sequence so that it doesn't have to stop, while also navigating obstacles in the environment. This is a challenging problem in perception, dynamic path planning and control.

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

High-speed robotic waste separation

Sorting waste or recyclables is an important but unpleasant job, currently done by specialised machinery and humans for the hard bits.  What are the core challenges that could be done by "robots that see". This is a challenging problem in perception, dynamic path planning and control.

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Very high-speed dynamic motion planning for arm robots

Robot manipulator arms are increasingly used for logistics applications.  These typically require robots to run at the limits of their performance: motor torque and motor velocity.  Added challenges include significant payloads (if we are schlepping heavy parcels) with apriori unknown mass, the possibility of boxes detaching from the gripper under high acceleration, and fixed obstacles in the workspace.  How can we determine the limits to performance, quickly identify the payload mass, then plan the fastest path to get from A to B.

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Implicit representations for place recognition and robot localisation

This project will develop a novel localization pipeline based on implicit map representations. Unlike traditional approaches that use explicit representations like point clouds or voxel grids, the map in our project is represented implicitly in the weights of neural networks such as Neural Radiance Fields (NeRF). You will get a chance to develop a new class of localization algorithms that work directly on the implicit representation, bypassing the costly rendering step from implicit to explicit representation. The designed algorithms will …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Space robotics: Scene understanding for Lunar/Mars Rover

The QUT Centre for Robotics is working with the Australian Space Agency on the newly established Australian space program, in which robots will play a key role. There are multiple PhD projects available to work on different aspect of developing a new Lunar Rover (and later Mars Rover) and in particular its intelligence and autonomy. Future rovers will not only need to conduct exploration and science missions as famous rovers such as NASA's Curiosity or Perseverance are doing right now …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Semantic based onboard UAV navigation

In recent years the field of robotic navigation has increasingly harnessed semantic information in order to facilitate the planning and execution of robotic tasks. The use of semantic information focuses on employing representations more understandable by humans to accomplish tasks with robustness against environmental change, limiting memory requirements and improving scalability. Contemporary computer vision algorithms extracting semantic information have continuously improved their performance on benchmark datasets, however, most computations are expensive, limiting their use for robotic platforms constrained by size, …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Manipulation in nature

Grasping/manipulating in rainforest, farmland or shrubland environments pose a new challenge for existing techniques. This project will investigate how they manipulate where there may be tree branches, foliage, or other natural obstacles in the way.This project would explore existing and emerging techniques such as optimisation, neural radiance fields (NeRFs), deep learning and reinforcement learning and equipment, including depth cameras, LiDAR, event cameras, and light field cameras.Does the manipulator have to re-arrange the environment to manipulate the point of interest?Or does …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Robot learning for navigation, interaction, and complex tasks

How can robots best learn to navigate in challenging environments and execute complex tasks, such as tidying up an apartment or assist humans in their everyday domestic chores?Often, hand-written architectures are based on complicated state machines that become intractable to design and maintain with growing task complexity. I am interested in developing learning-based approaches that are effective and efficient and scale better to complicated tasks.Especially learning based on semantic information (such as extracted by the research in semantic SLAM above), …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Semantic SLAM for robotic scene understanding, geometric-semantic representations for infrastructure monitoring and maintenance

Making a robot understand what it sees is one of the most fascinating goals in our current research. To this end, we develop novel methods for Semantic Mapping and Semantic SLAM by combining object detection with simultaneous localisation and mapping (SLAM) techniques.We work on novel approaches to SLAM that create semantically meaningful maps by combining geometric and semantic information. Such semantically enriched maps will help robots understand our complex world and will ultimately increase the range and sophistication of interactions …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Page 13 of 39

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.