QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 468 matching student topics

Displaying 157–168 of 468 results

Continual learning system

AI that is pre-programmed is limited in its tasks and human bias. Learning systems offer richer decision-making behaviors where collaborative projects have led to the following three systems that require integration:A symbolic learning system that can continually learn Boolean classification problems as they are presented to it. But this needs to be extended to real-valued, noisy and uncertain classification problems.A lateralized system that can consider an input at the constituent level and the holistic level simultaneously, which enables flexible and …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Drone ship landing under adverse sea condition

Estimating the motion of a landing deck, and controlling the descent of a drone under severe weather events is a challenging task. We have developed a simulation environment to test control and prediction algorithms that could allow a drone to safely land on a ship. This PhD program involves the investigation of innovative predictive control approaches closely linked with predictors that provide T secs ahead the future position of the landing deck.

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Estimation and control of networked cyberphysical systems

Cyberphysical systems (CPS) integrate sensors, communication networks, controllers, dynamic processes and actuators. CPS play an increasingly important role in modern society, in areas such as energy, transportation, manufacturing, healthcare. Due to the interplay between control systems, communications and computations, the design of CPS requires novel approaches, which bridge disciplinary boundaries.This PhD project will develop engineering science and methods for the analysis and design of CPS operating in closed loop. Your research will bring together elements of control systems engineering, as …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Towards resilient cyberphysical systems

Many critical infrastructure systems are operated using networked feedback control. These systems crucially use wireless networks to transmit sensor and actuation signals. Unfortunately, wireless technology (sensors, actuators and communications) is unreliable and increasingly vulnerable to cyberattacks. This causes performance degradation, loss of stability, system failure and, at worst, leads to deaths and disasters. Therefore, mitigating the effects of attack algorithms on Cyberphysical Systems (CPSs) is of utmost importance.A distinguishing aspect, when compared to attacks on classical information systems, is that …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Model predictive control of connected vehicle platoons

Control of connected vehicle platoons can ensure the swift movement of traffic through a city by sharing vehicles' states and desired actuation. This networked control design can alleviate traffic jams, reduce vehicle emissions, and reduce fuel usage through improved aerodynamics. Model Predictive Control algorithms are a natural solution to address constraints arising from both communications and system dynamics. A key challenge is to design distributed control algorithms that are robust to disturbances in the environment and to stochastic information from …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Coordinated control of multi-robot systems for dynamic task execution

Managing multiple robotic systems simultaneously poses many challenges around coordination and control. This is particularly true in environments where there's a lack of accurate localisation, sensing uncertainty and limited communications, yet there is an overarching mission objective or series of tasks that need to be completed.In this project, you will explore and develop approaches around multi-robot swarming and coordinated formation control for dynamic process monitoring, target tracking and coordinated mapping. There will be a particular focus on underwater and surface …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Off-road mobile manipulation

This project will investigate how mobile manipulators can operate and interact in natural environments like rainforests, grassland, shrubland, farmland, or desert ecosystems. This research project would explore how to control a continuous track or quadruped mobile manipulator in outdoor natural environments with many obstacles and constraints.Is holistic mobile manipulation possible with uneven terrain? As a mobile robot traverses rough ground, the terrain difference will cause feedback in the end-effector position.The mobile manipulator must overcome obstacle challenges, i.e. traverse around a …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Mobile manipulation with logistics

Mobile manipulators have been proven helpful for individual manipulation tasks but slow for larger-scale logistical tasks. This project investigates how several robots (mobile manipulators and mobile robots) can cooperate to complete a task efficiently (this could be considered a travelling salesman problem with moving depots).Agriculture: The mobile manipulator picks the produce while the mobile robots transfer to produce between collection points.Clean up Australia Day 2019: Collecting rubbish from natural environments. Mobile manipulators collect rubbish and transfer it to mobile robots, …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Ubiquitous visual positioning devices

Everything that moves is defined and limited by its ability to navigate the world in which it exists. Knowing where you are located in the world is a key navigational capability for people, animals, and both autonomous and human-operated platforms ranging from self-driving cars to aircraft.But accurate and trustworthy positional knowledge has widespread potential implications beyond navigation: it can, for example, allow life-and-death decisions in defence and in tracking the spread of global pandemics. Both the potential of and problems …

Study level
Honours
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics
Research centre(s)
Centre for Robotics

The effects of trust on government operations

For a government to operate efficiently, the trust of its constituents, as well as the global community, is considered to be of substantial importance. A lack of trust could impair the government’s ability to effectively manage and fund its operations from collecting taxes and external investment. However, further research is required to understand the underlying trust mechanisms and their influence on governments’ performance. To address this research gap, the project will examine how trust in government is determined, evaluate how …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Business and Law
School
School of Accountancy
Research centre(s)
Centre for Future Enterprise

Ecosystem responses to climate change and human impacts on sub-Antarctic islands: a context for conservation

Sub-Antarctic islands have unique ecosystems and landscapes under increasingly pressure from climate change. In many cases this is compounded by the introduction of invasive species since their discovery by humans in the 1800s.Understanding ecosystem and environmental responses to climate change and separating them from human-induced causes of change is essential for their future protection. To do this requires quantifying long-term, natural rates and variability of change, establishing the ‘baseline’ status of ecosystems and the environment prior to human arrival, and …

Study level
PhD
Faculty
Faculty of Science
School
School of Biology and Environmental Science
Research centre(s)

Centre for the Environment

Human robotic interaction prototyping toolkit

Design relies on prototyping methods to help envisage future design concepts and elicit feedback from potential users. A key challenge the design of human-robot interaction (HRI) with collaborative robots is the current lack of prototyping tools, techniques, and materials. Without good prototyping tools, it is difficult to move beyond existing solutions and develop new ways of interacting with robots that make them more accessible and easier for people to use.This project will develop a robot collaboration prototyping toolkit that combines …

Study level
PhD
Faculty
Faculty of Creative Industries, Education and Social Justice
School
School of Design
Research centre(s)

Design Lab

Page 14 of 39

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.