QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 468 matching student topics

Displaying 229–240 of 468 results

Investigation of host tissue response to synthetic pelvic meshes in patients with complications

Pelvic organ prolapse (POP) is a prevalent disease affecting 37% of asymptomatic women. Pelvic mesh implantation is a common surgical procedure employed to treat stress urinary incontinence, rectal prolapse and pelvic organ prolapse. However, the use of pelvic meshes can cause complications such as erosion, infection, pain and discomfort, which sometimes require further surgery. In Australia, in November 2017, the TGA banned transvaginal mesh for prolapse. Currently, women with complications from their pelvic mesh may opt to have them surgically …

Study level
Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)
Centre for Biomedical Technologies

Investigating Australian consumer perspectives on smart home products

Technological advancements such as information and communication technologies, artificial intelligence, internet-of-things, robotics, and the increasing popularity of the smart city and smart living movements during the last couple of decades have created and intensified a boom of the smart home industry. At present, digital technology applications uptake in homes has become common and increasingly changed people’s lifestyles. Smart home technology provides a suite of independently and remotely controlled software and hardware connected to a network to deliver smart living. Smart …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Architecture and Built Environment

Internet of Mobile Energy

The emergence of the two-way communication model and Distributed Energy Sources (DES) is transforming traditional power systems from largely centralised energy production to more decentralised and connected management systems. This is called the 'smart grid'.As the smart grid evolves, electric vehicles (EVs) are emerging as unconventional and highly-disruptive participants in the grid that can add significant benefit and flexibility. Notably, EVs are equipped with a relatively high capacity battery that stores energy to power the vehicle.EV batteries, coupled with the …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Computer Science

Machine learning for understanding and predicting behaviour

Understanding behaviour and predicting events is a core machine learning task, and has many applications in areas including computer vision (to detect or prediction actions in video) and signal processing (to detect events in medical signals).While a large body of research exists exploring these tasks, a number of common challenges persist including:capturing variations in how behaviours or events appear across different subjects, such that predictions can be accurately made for previously unseen subjectsmodelling and incorporating long-term relationships, such as previously …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Development composite electrode for next generation Li-ion batteries

Australia is rich in lithium battery materials and is poised to be the world leader in sustainable energy storage. The rapid growth in the automobile and energy sector created greater demand for high-performance Li-ion batteries with high energy density. Conventional Li-ion batteries utilise a graphite anode with a limited theoretical capacity. Therefore, we need to develop alternative electrode materials with high energy density and a longer lifespan.Silicon (Si) has received attention owing to its high specific capacity at ambient temperature. …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Materials Science

Forecasting disease spread risk based on human movement patterns

This project aims to forecast the risk of infectious disease spread, such as COVID-19 and dengue, based on human movement patterns. We'll use multiple data sources that describe people movement in order to understand individual and population level mobility patterns, and use empirical disease case data to model the effect of movement on the spread of disease.

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Computer Science

Trust in Internet-of-Things with blockchain

Blockchain is an unchangeable, distributed database that provides trust in data once it is stored on the database. However, in Internet-of-Things (IoT), the data is an observation of physical context and is susceptible to noise, drift, or malicious alterations. Sensors may even be decoupled from their intended context by an attacker, which may compromise the blockchain data and its value for guiding decisions.This project aims to develop an innovative approach for pervasive trust in IoT, underpinned by blockchain. The research …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Computer Science

Leadership and digital transformation

Digital transformation and digitalisation are on top of the CIOs' agenda. However, organisations embarking into these initiatives struggle to understand the nature of leadership capabilities required for effective DT. Furthermore, the complexities associated with pandemics such as Covid19 has forced organisations to change the traditional view of leadership. The uncertainties require well-rounded leaders who can create vision and execute tactically to influence change, develop digital capabilities and foster enterprise agility.

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Information Systems

Developing models of failure for porous materials

Classical fracture mechanics accurately predicts the failure strength of samples with sharp flaws such as pre-existing cracks. However, to predict the failure of porous materials we need to develop an understanding of how stresses are concentrated around smooth flaws in the material such as rounded pores, and how these stress concentrations contribute to failure.Finite fracture mechanics combines the energy criterion for failure from classical fracture mechanics with a stress criterion from macroscopic failure theory. The coupled criterion has by now …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences

Computational methods for multi-scale structural optimisation

Structural optimisation is a powerful computational methodology for finding high-performing designs for structural components or material architectures. For example, what periodic scaffold would provide the highest possible stiffness for its weight?Solving such a problem computationally requires an understanding of the relevant equations required to model the physical properties of interest, as well as efficient implementation of a range of numerical methods including finite elements, finite differences and optimisation.With recent developments in 3D printing technologies it is now becoming possible to …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences

Springbrook groundwater monitoring and modelling

In partnership with the City of Gold Coast, QUT has set up water monitoring networks in the Gold Coast Hinterland to improve assessment of water and ecological resources. You will have an opportunity to carry out research that leads to improved environmental management.

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Biology and Environmental Science

Safe and non-flammable electrolytes for batteries

Electrolytes play a significant role in determining the performance of energy storage devices. In general, different types of liquid electrolytes have been investigated so far including organic liquids, ionic liquids, and aqueous. Among them, organic liquid electrolytes are highly flammable and volatile, while aqueous electrolytes suffer from a narrow working voltage window. IL liquid showed a promise to circumvent these challenges, however, their practical applications are plagued by the high cost, difficulty in preparation, and toxicity.This project will develop low-cost …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Page 20 of 39

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.