QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 494 matching student topics

Displaying 61–72 of 494 results

Analysis of professional squash matches

This project concerns computer vision and statistical analysis of performance in professional level matches in the game of squash.The goal is to use computer vision and existing systems to capture and analyse patterns of play, allowing coaches and professional players to develop strategies to improve performance, to counter particular types of play and even to tailor game plans to attack individual opponents.

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Computer Science
Research centre(s)
Centre for Data Science

Multi-UAV navigation in GPS denied environments

The aim of this research is to develop a framework for multiple Unmanned Aerial Vehicles (UAV), that balances information sharing, exploration, localization, mapping, and other planning objectives thus allowing a team of UAVs to navigate in complex environments in time critical situations. This project expects to generate new knowledge in UAV navigation using an innovative approach by combining Simultaneous Localization and Mapping (SLAM) algorithms with Partially Observable Markov Decision Processes (POMDP) and Deep Reinforcement learning. This should provide significant benefits, …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

UAV navigation in GPS denied environments

This PhD project aims to develop a framework for unmanned aerial vehicles (UAV), which optimally balances localisation, mapping and other objectives in order to solve sequential decision tasks under map and pose uncertainty. This project expects to generate new knowledge in UAV navigation using an innovative approach by combining simultaneous localisation and mapping algorithms with partially observable markov decision processes. The project’s expected outcomes will enable UAVs to solve multiple objectives under map and pose uncertainty in GPS-denied environments. This …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Increasing resilience of robotic systems through quickest change detection technology

Future robotics systems are likely to benefit from having an ability to self-diagnose self-failure or the presence of anomalous situations (so that they can switch to fallback or fail-safe modes). Example situations include subtle sensor or actuator failure and cyber security or physical intruder detection.Such low signal-to-noise anomaly detection or self-diagnose problems can be understood using powerful mathematical and statistical tools which QCR has a rich history of advancing through collaboration with industry partners and publication in premium international venues.

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Process-data governance patterns

Data is recognised a strategic asset for organisations. There is a growing need to manage the voluminous data an organisation is exposed to in order to use it for decision-making.Of particular significance is process data, which consists of information about the execution of processes. Such information is used to uncover behaviour of processes within an organisation. This brings forth the significance of data governance. Data governance is the exercise of control and authority over management of data. Despite its significance, …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Information Systems

Fine-grained software vulnerability detection using deep learning techniques

Software vulnerability is a major threat to the security of software systems. Thus, the successful prediction of security vulnerability is one of the most effective attack mitigation solutions. Existing approaches for software vulnerability detection (SVD) can be classified into static and dynamic methods. Powered by AI capabilities, especially with the advancement of machine learning techniques, current software has been produced with more sophisticated methodologies and components. This has made the automatic vulnerability proneness prediction even more challenging. Recent research efforts …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Science
School
School of Computer Science

Data-driven and process-aware workforce analytics

Modern information systems in today’s organisations record massive amount of event log data capturing the execution of day-to-day core processes within and across organisations. Mining these event log data to drive process analytics and knowledge discovery is known as process mining. To date various process mining techniques have been developed to help extract insights about the actual processes with the ultimate goal to organisations' workforce capability and capacity building.As an important sub-field of process mining, organisational mining focuses on discovering …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Information Systems
Research centre(s)
Centre for Data Science

Explainable AI-enabled predictive analytics

Modern predictive analytics underpinned by AI-enabled learning (such as machine learning, deep learning) techniques has become a key enabler to the automation of data-driven decision making. In the context of process monitoring and forecast, predictive analytics has been applied to making predictions about the future state of a running process instance - for example, which task will be carried out next, when and who will perform the task, when will an ongoing process instance complete, what will be the outcome …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Information Systems
Research centre(s)
Centre for Data Science

Semantic based onboard UAV navigation

In recent years the field of robotic navigation has increasingly harnessed semantic information in order to facilitate the planning and execution of robotic tasks. The use of semantic information focuses on employing representations more understandable by humans to accomplish tasks with robustness against environmental change, limiting memory requirements and improving scalability. Contemporary computer vision algorithms extracting semantic information have continuously improved their performance on benchmark datasets, however, most computations are expensive, limiting their use for robotic platforms constrained by size, …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Investigating factors impacting urban heat vulnerability in subtropical cities

In recent years, with the rise in climate change impact, urban heat has become a major issue for many cities to tackle consequently. Extreme heat events are becoming more frequent and intense due to climate change, which has directly caused a substantial increase in heat-related morbidity and mortality. This indispensably puts an extra burden on medical systems and national finance. Meanwhile, the urban heat island effect has been exaggerating the consequences caused by the increased extreme heat in metropolitan areas. …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Architecture and Built Environment

The dark side of robotic process automation

Pandemics such as COVID 19 have forced organisations to pursue hyper-automation to maintain operational sustainability. Many organisations are keen to adopt Robotic Process Automation (RPA) to dramatically improve operational efficiency. However, evidence to date highlighted various associated challenges associated with adoption of RPA in organisations.Furthermore, recent surveys by consultant organisations found a high RPA project fail rate and their inability to meet the expected return on investment.

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Information Systems
Research centre(s)
Centre for Future Enterprise

Alleviating corruption: a data driven perspective

Corruption is cited as among the greatest challenges faced by government and citizenry the world over and threatens to undermine the very trust that is essential for a functioning democratic society. In order to earn and maintain public trust, governments at all levels must continuously strive to reduce corruption and uphold the highest levels of integrity.Amidst the countless human interactions and electronic transactions that occur within the public service on a daily basis are a complex and ever-changing variety of …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Information Systems
Research centre(s)
Centre for Data Science

Page 6 of 42

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.