QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 4 matching student topics
Displaying 1–4 of 4 results
Experimental validation of a novel tricuspid valve design
The tricuspid valve is responsible for regulating the flow of blood between the right atrium and the right ventricle of the heart. During ventricular systole, it closes to prevent the backflow of blood from the right ventricle into the right atrium. This closure ensures that blood is pumped forward into the pulmonary circulation. In contrast, the tricuspid valve opens during ventricular diastole, allowing blood to flow from the right atrium into the right ventricle.When the tricuspid valve fails to close …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Engineering
- School
- School of Mechanical, Medical and Process Engineering
- Research centre(s)
- Centre for Biomedical Technologies
Simulation of turbulent fluid flow through a microfluidic device using CFD
Microfluidic devices (MFD) are extensively used in microbial studies. Bacterial cell attachment onto surfaces under flow conditions in laminar regime has been previously studied using a custom designed MFD.As an extension of this study, microbial attachment under turbulent flow is to be studied in a future project. The suitability of current MFD for microbial studies under turbulent flow must be evaluated to adopt / redesign the MFD.A computational fluid dynamics (CFD) analysis is proposed to examine the fluid flow inside …
- Study level
- Honours
- Faculty
- Faculty of Engineering
- School
- School of Mechanical, Medical and Process Engineering
Image-based assessment of atherosclerotic plaque vulnerability: Towards a computational tool for early detection and prediction
Plaque characteristics and local haemodynamic/mechanical forces keep changing during plaque progression and rupture.Quantifying these changes and discovering the progression-stress correlation can improve our understanding of plaque progression/rupture. This will lead to a quantitative assessment tool for early detection of vulnerable plaques and prediction of possible ruptures.Our research project aims to combine medical imaging, computational modelling, phantom experiments and pathological analysis to investigate plaque progression and vulnerability to rupture in both animal models and patients with carotid stenosis.We will identify and …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Engineering
- School
- School of Mechanical, Medical and Process Engineering
- Research centre(s)
- Centre for Biomedical Technologies
Image-based computational model to predict intracranial aneurysm rupture
Intracranial aneurysms are bulging, weak areas of an artery that supply blood to the brain which are relatively common. While most aneurysms do not show symptoms, 1% spontaneously rupture which can be fatal or it can leave the survivor with permanent disabilities. This catastrophic outcome has motivated surgeons to operate on approximately 30% of aneurysms despite their rate of complications arising and cost of operation.The impact of aneurysm morphology on blood flow shear stress and rupture could educate surgical decision-making …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Engineering
- School
- School of Mechanical, Medical and Process Engineering
- Research centre(s)
- Centre for Biomedical Technologies
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.