QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 7 matching student topics
Displaying 1–7 of 7 results
Parameter identifiability for stochastic processes in biological systems
Stochastic models are used in biology to account for inherent randomness in many cellular processes, for example gene regulatory networks. Noise is often thought to obscure information, however, there is an increasing understanding that some randomness contains vitally important information about underlying biological processes.When applying these models to interpret and learn from data, unknown parameters in the model need to be estimated. However, not all data will contribute to a given estimation task regardless of the data quantity and quality. …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Scalable Bayesian Inference using Multilevel Monte Carlo
Bayesian inference is a popular statistical framework for estimating the parameters of statistical models based on data. However, Bayesian methods are well known to be computationally intensive. This fact inhibits the scalability of Bayesian analysis for real-world applications involving complex stochastic models. Such models are common in the fields of biology and ecology.Multilevel Monte Carlo (MLMC) methods are a promising class of techniques for dealing with the scalability challenge. These approaches use hierarchies of approximations to optimise the trade-off between …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Efficient parameter estimation for agent-based models of tumour growth
Cancer is an extremely heterogeneous disease, particularly at the cellular level. Cells within a single cancerous tumour undergo vastly different rates of proliferation based on their location and specific genetic mutations. Capturing this stochasticity in cell behaviour and its effect on tumour growth is challenging with a deterministic system, e.g. ordinary differential equations, however, is possible with an agent-based model (ABM). In an ABM, cells are modelled as individual agents that have a probability of proliferation and movement in each …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Topics in computational Bayesian statistics
Bayesian statistics provide a framework for a statistical inference for quantifying the uncertainty of unknowns based on information pre and post data collection.This information is captured in the posterior distribution, which is a probability distribution over the space of unknowns given the observed data.The ability to make inferences based on the posterior essentially amounts to efficiently simulating from the posterior distribution, which can generally not be done perfectly in practice.This task of sampling may be challenging for various reasons:The posterior …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Surrogate models for accurate prediction and inference in mathematical biology
High fidelity mathematical models of biological phenomena are often complex and can require long computational runtimes which can make computational inference for parameter estimation intractable. In this project we will overcome this challenge by working with computationally simple low fidelity models and build a simple statistical model of the discrepancy between the high and low fidelity models. This approach provides the best of both worlds: we obtain high accuracy predictions using a computationally cheap model surrogate.
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Efficient Parameter Estimation for Stochastic Simulations
Stochastic simulation-based models are routinely used in many areas of science to describe inherent randomness in many real-world systems. Applications include the study of particle physics, imaging if black holes, biochemical processes, the migration of animals, and the spread of infectious diseases. To apply these models to interpret data requires statistical methods to estimate model parameters.Unfortunately, standard statistical techniques are not capable of analysing data using these models. This is largely due to the model likelihood, the probability of the …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Investigating differences in downstream signalling mediated by two isoforms of FGFR2 in endometrial cancer
FGFR2 encodes two alternatively spliced isoforms that differ in their ligand binding domain and the combination of tissue specific expression of these isoforms and tissue specific expression of the FGF ligands is the foundation of normal paracrine signalling. Isoform switching from FGFR2b (inclusion of exon 8) to FGFR2c (inclusion of exon 9) occurs in tumorigenesis as it establishes an autocrine loop in epithelial cancer cells.We have previously published a detailed investigation into differences between wildtype FGFR2b and mutant FGFR2b following …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.