QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 476 matching student topics

Displaying 37–48 of 476 results

Smoke and mirrors: intercepting the elusive molecular precursors of soot

Soot formation occurs via a complex network of chemical reactions leading from simple gases to macromolecular aggregates. Despite being central to our understanding of extreme environments ranging from engines, to bushfires and interstellar clouds, the critical steps and intermediates in these reactions are poorly described.This project will deploy advanced mass spectrometry and laser-based methods to generate, isolate and interrogate gas phase free radical intermediates and elucidate their role in molecular weight growth processes.Through these chemical insights, advanced computational models will …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Elucidating the gas-phase reactivity and photochemistry of halide anions

Bromine and iodine are suspected to be responsible for most of the halogen-induced ozone loss in the stratosphere but are not currently included in atmospheric models due to a paucity of knowledge of the gas-phase chemistry and photochemistry of their anions and radicals.This project will develop and deploy advanced mass spectrometry and laser spectroscopy techniques to enable precision measurements of the reactions and photo- reactions of gas-phase iodide and bromide anions and their oxides.These state-of-the-art measurements of reaction kinetics and …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Surrogate models for accurate prediction and inference in mathematical biology

High fidelity mathematical models of biological phenomena are often complex and can require long computational runtimes which can make computational inference for parameter estimation intractable.  In this project we will overcome this challenge by working with computationally simple low fidelity models and build a simple statistical model of the discrepancy between the high and low fidelity models.  This approach provides the best of both worlds: we obtain high accuracy predictions using a computationally cheap model surrogate.

Study level
PhD, Master of Philosophy
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science

Citizen-developers: challenges and opportunities for low-code/no-code automation

Robotic Process Automation (RPA) is becoming a popular choice for organisations to support their digital transformation and to maintain operational resilience. Many organisations are keen to adopt Robotic Process Automation (RPA) to dramatically improve operational efficiency. Many organisations train and assign their staff as “citizen-developer” to design, test, and maintain the bots using Low-Code/No-Code platforms. However, there are number of issues surfaced when using organisational employees as citizen developer ranging from technical & process capabilities to scalability of RPA.

Study level
Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Information Systems
Research centre(s)
Centre for Data Science

Artificial Intelligence for collaborative and intelligent user interfaces

This project seeks to leverage recent advances in machine vision and natural language processing algorithms to support the design and development of knowledge-driven applications that support communication and collaborations with their users.One particular area where this will be investigated is in workplaces for supported employment, that is employment opportunities for people with intellectual disability. One of the questions to address is how machines could respond to what a user shows them in order to assist with decision making in a …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Computer Science

Representation learning for anti-microbial resistance

This project is about using neural network models help us understand Anti-Microbial Resistance (AMR), a phenomenon in which bacteria adapt to reduce the effectiveness of antibiotics, usually through a process known as Lateral or Horizontal Gene Transfer - where genes are included in the organism from other sources.Our focus will be on learning compact vector representations of biological sequences known to be associated with AMR genes. By encoding DNA sequences in this way we can more rapidly identify AMR genes …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Computer Science
Research centre(s)
Centre for Data Science

Co-benefits of trees on farms: soil carbon

Soils are now in the ‘front line’ of global environmental change. Soils are the largest global pool of actively cycling organic C and N. Maintaining and increasing soil organic matter (SOM) is a prominent strategy for mitigating atmospheric CO2 and adapting agriculture to climate change.At the same time the global biodiversity crisis has led to increased scrutiny on supply chains to scrutinise farms ecological footprint. Planting or retaining trees in the landscape has the opportunity to achieve both outcomes, however …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Biology and Environmental Science
Research centre(s)
Centre for Agriculture and the Bioeconomy

Sport AI

Videos of sport activities are widely available at large scales. AI and its sub-fields, especially computer vision and machine learning, have a great potential to analyse, understand and extract useful information from these videos.This project aims at using AI and its subfields in computer vision and machine learning to develop techniques for analysing sport videos to extract intelligence for players and coaches.

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Transport big data analytics: Imputing missing data

The missing data problem is often unavoidable for real-world data collection systems because of a variety of factors, such as sensor malfunctioning, maintenance work, transmission errors, and so on. Filling in missing information in a dataset is an important requirement for many machine-learning algorithms that require a complete dataset as input. Data imputation algorithms aim at filling the missing information in a dataset. Many missing data imputation techniques exist in the literature, with applications demonstrated on various types of datasets. …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Civil and Environmental Engineering
Research centre(s)
Centre for Data Science

Efficient parameter estimation for agent-based models of tumour growth

Cancer is an extremely heterogeneous disease, particularly at the cellular level. Cells within a single cancerous tumour undergo vastly different rates of proliferation based on their location and specific genetic mutations. Capturing this stochasticity in cell behaviour and its effect on tumour growth is challenging with a deterministic system, e.g. ordinary differential equations, however, is possible with an agent-based model (ABM). In an ABM, cells are modelled as individual agents that have a probability of proliferation and movement in each …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science

Keeping carbon – ensuring soil carbon gains through improved grazing management persist through drought in Australia's tropical and semi-arid grasslands

Drought is the biggest barrier to sequestering soil organic carbon (SOC) in soils over the long-term. While options are limited during dry periods, how we manage our pastures prior to drought can influence the resilience of SOC to losses and enhance recovery.

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Biology and Environmental Science
Research centre(s)
Centre for Agriculture and the Bioeconomy

Using time-controlled grazing to sequester carbon in Queensland rangelands

Time-controlled grazing (TCG), or cell grazing is a management strategy in which cattle are stocked and rotated across small paddocks or “cells” according to fodder availability. Grazing takes place in short durations at high stocking densities, in an effort to mimic the grazing patterns of wild ungulate herds.This management strategy has gained traction in recent years due to claims that it improves both pasture productivity and diversity, whilst also increasing long-term carbon pools. Limited data is available on the impact …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Biology and Environmental Science
Research centre(s)
Centre for Agriculture and the Bioeconomy

Page 4 of 40

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.