QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 6 matching student topics
Displaying 1–6 of 6 results
Characterising drivers of melanoma cell heterogeneity
Tumour cell heterogeneity is linked to tumour progression through the generation of divergent cellular behaviours such as proliferation, survival, invasion and therapy resistance. Crucially, conventional and targeted therapies generally only target highly proliferative cells in tumours leading to initial tumour regression, however alternative sub-populations underpin the return of treatment refractory disease and facilitate metastatic spread. Our laboratory is focused on understanding the regulatory drivers of cellular plasticity in melanoma to better understand progression and metastatic spread of this disease and …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Dissecting the molecular and cellular basis of melanoma susceptibility
Several factors strongly influence an individual’s chance of developing melanoma. Paramount amongst these are the number of moles (nevi) present on the skin, cumulative levels of UV exposure and skin pigmentation phenotype. Numerous Genome Wide Association Studies (GWAS) we have identified gene variants at a number of loci that are strongly associated with cutaneous nevi (mole) counts, UV damage response and accordingly susceptibility of individuals to develop melanoma. Currently the functional impact of genetic variants in the genes IRF4, PLA2G6 …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Understanding the genetics of melanoma susceptibility: many roads lead to DNA repair
Repair of the damage caused by mutagens such as UV and reactive oxygen species is vital to prevent cancer and premature aging and accordingly cells have developed a suite of intricate and specific DNA repair pathways. Loss or abnormal function of components of these pathways lead to cancer pre-disposition syndromes for example breast cancer in individuals carrying mutations in the BRCA1 or BRCA2 genes. Understanding the complexities of these DNA repair pathways is vital to efforts aimed at preventing or …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Characterisation of melanoma cell membranes to identify novel drug targets
Cell membrane structure and function are altered during tumour development, but to date comprehensive studies on the characterisation of cell membranes of a given cancer are scarce, or are only focused on a particular property (e.g. overall charge, global lipid composition, or specific lipid). In preliminary work we compared the lipidome (i.e. the lipid profile) of a panel of cells, and found the lipid composition of model melanoma cells to be distinct from that of other cancerous and non-cancerous cells. …
- Study level
- PhD
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Identification of novel melanoma biomarkers using exosomes
Tumour cells excrete exosomes, membrane vesicles (30-150 nm diameter) that encapsulate and transport proteins, metabolites and genetic material. They mediate intercellular communication within the tumor microenvironment, metastasis formation via circulation, and development of drug resistance. Circulating tumor-derived exosomes can be isolated from blood patients as a non-invasive liquid biopsy.The chemical composition and overall properties of the exosomal membranes are expected to be similar to those of parent cell membranes and to modulate blood circulation time, and uptake and targeting of …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Development of peptides as therapeutics to treat drug-resistant metastatic melanoma
Melanoma is a very aggressive cancer due to its metastatic potential, and the third most common in Australia. Many patients with metastatic melanoma have strong side effects, do not respond, or develop resistance to current therapies, which results in low survival rate (26% in 5-years). This project aims at developing a new class of therapeutic leads to tackle drug-resistance in metastatic melanoma.Currently, the preferred first-line regimen given to patients with metastatic melanoma is immunotherapy with antibodies (i.e. ipilimumab and nivolumab), …
- Study level
- PhD
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.