QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 88 matching student topics

Displaying 13–24 of 88 results

Modeling roost selection by flying foxes in Moreton Baty region

Study level
Honours
Faculty
Faculty of Business and Law
School
School of Accountancy

Modelling of sugar cane crushing

Cane sugar factories, while producing sugar and molasses, provide their own energy and power from the sugar cane biomass residue, are green house gas neutral and can export renewable electricity to the grid.  The performance of the milling train in extracting juice and dewatering the biomass bagasse residue are key components of the operation.  Understanding and modelling the process are seen as a way forward to improve the performance, for example by reducing the final bagasse moisture below the current levels.

Study level
PhD
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Agriculture and the Bioeconomy

Modelling of electrochemical CO2 capture and conversion

Renewable electricity is remarkably cheap, and is only going to get cheaper. However, existing state-of-the-art CO2 capture and conversion processes use thermal energy (typically generated by burning natural gas). This modelling project will investigate electrochemical techniques for capturing CO2 from air (direct air capture) and converting it to useful chemicals and materials.

Study level
PhD
School
School of Mechanical, Medical and Process Engineering

Evaluating the performance of PODs due to composite load models with high levels of embedded Distributed PVs (D-PV)

Power oscillation Damper (POD) in South QLD are used to provide sufficient damping to inter-area mode of oscillations (electro-mechanical modes). These oscillatory modes often change their characteristics due to changes in load dynamics and the inherent transmission system topology.While the interconnections between generators and transmission lines have not changed over the recent years, there is a significant change in the embedded load dynamics. With high penetration of rooftop PV (including PV distributed at LV and MV level), in South QLD, …

Study level
PhD, Master of Philosophy
School
School of Electrical Engineering and Robotics

Development of a 3D Printed Nasal Model to Study Viral-Airway Interactions

As airway infections become pandemic worldwide, airway models to investigate pathogen infection mechanism and nasal drug delivery is now increasingly important. However, current airway models cannot mimic the triad coupling of human nasal anatomical geometries, aerosol flow and biological responses (e.g. infection and inflammation) from the nasal epithelium.Computational fluid dynamics (CFD) models are used for simulating pathological airflow patterns resulting from anatomical structural changes of the nasal cavities, but they cannot measure phenotypic or functional alterations in the nasal epithelium …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Understanding the immunological mechanisms that regulate increased susceptibility to respiratory syncytial viral infection after stem cell transplantation

Allogeneic stem cell transplantation (alloSCT) is considered the gold standard procedure for the treatment of blood cancers. Globally, over 9000 patients per year undergo this high-risk, life-saving therapy. However, major complications limit the therapeutic potential of this treatment which include graft-versus-host disease (GVHD) and infections due to the severe immunosuppression in these patients. Respiratory syncytial viral (RSV) infection is frequent in these patients, is often fatal and clearly a significant clinical problem. Thus, there is a pressing need for new …

Study level
PhD, Master of Philosophy, Honours
School
School of Biomedical Sciences

Developing a precision oncology workflow for Osteosarcoma treatment

Osteosarcoma (OS) is the most common malignant bone tumour that primarily affects children and adolescents. With approximately 400 diagnosed cases/year in Australia, OS has the lowest survival rate of all solid cancers and is the leading cause of cancer-related death in Queensland adolescents. Unfortunately, 3 in 4 patients will not survive longer than five years following diagnosis with metastatic OS. Clinical “one size fits all” treatment strategies results in highly variable and unacceptably poor patient responses. Shockingly, both the OS …

Study level
PhD, Master of Philosophy
School
School of Biomedical Sciences
Research centre(s)
Centre for Biomedical Technologies

Developing in vitro 3D models to understand liver disease

Several studies have demonstrated the appropriateness of 3D organoid cultures over the conventional 2D cultures, the advantages of 3D models include replicating the complex attributes of the liver beyond liver-specific metabolism, such as increased cell density, organization, and cell–cell signalling, O2 zonation.In this project we will establish a novel in vitro 3D model to study hepatocyte biology in the context of liver disease. A more comprehensive approach to investigating the intercellular mechanisms of NAFLD will include co-culture of organoids with …

Study level
PhD, Master of Philosophy, Honours
School
School of Biomedical Sciences

Understanding the role of TGF signalling intermediates in liver and iron-related disease

Transforming growth factor β (TGFβ) and its family members is involved in many phases of liver disease development and iron regulation. We have identified unexplored players in liver disease and iron-related disorders: TGF signalling intermediates. In this project, we build on our exciting findings to examine the molecular mechanisms involved in TGF signalling intermediates-mediated disease progression and their potential as targets for liver and iron-related disease.AimsThis project aims to:examine the expression of TGF signalling intermediates in the liverspecifically deplete TGF …

Study level
PhD, Master of Philosophy, Honours
School
School of Biomedical Sciences

Development of bioengineered 3D tumour models for preclinical breast cancer research

3D organoid model technologies have led to the development of innovative tools for precision medicine in cancer treatment. Yet, the lack of resemblance to native tumours, and the limited ability to test drugs in a high-throughput mode, has limited translation to practice.This project will progress organoid models by using advanced tissue engineering technologies and high-throughput 3D bioprinting to recreate 'mini-tumours-in-a-dish' from a patient’s own tumour cells, and study the effects of various components of the tumour microenvironment on drug response.In …

Study level
PhD, Master of Philosophy, Honours
School
School of Biomedical Sciences
Research centre(s)
Centre for Biomedical Technologies

Characterizing effects of radiation therapy in 3D bioengineered cancer models

Radiation therapy (RT) is one of the most commonly used modalities in cancer treatment, usually delivered in combination with surgical intervention, chemotherapy, and immunotherapy.However, clinical outcomes show that almost 20% of patients fail to achieve targeted outcomes because of inherent resistance to radiation. This necessitates in-depth understanding of radiation resistance mechanisms using relevant preclinical models of RT. Previous in vitro studies have predominantly used two-dimensional (2D) cell culture models that do not recapitulate the three-dimensional (3D) complexity of native tissues.

Study level
Honours
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Developing models of failure for porous materials

Classical fracture mechanics accurately predicts the failure strength of samples with sharp flaws such as pre-existing cracks. However, to predict the failure of porous materials we need to develop an understanding of how stresses are concentrated around smooth flaws in the material such as rounded pores, and how these stress concentrations contribute to failure.Finite fracture mechanics combines the energy criterion for failure from classical fracture mechanics with a stress criterion from macroscopic failure theory. The coupled criterion has by now …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences

Page 2 of 8

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.