QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 4 matching student topics
Displaying 1–4 of 4 results
Developing a precision oncology workflow for Osteosarcoma treatment
Osteosarcoma (OS) is the most common malignant bone tumour that primarily affects children and adolescents. With approximately 400 diagnosed cases/year in Australia, OS has the lowest survival rate of all solid cancers and is the leading cause of cancer-related death in Queensland adolescents. Unfortunately, 3 in 4 patients will not survive longer than five years following diagnosis with metastatic OS. Clinical “one size fits all” treatment strategies results in highly variable and unacceptably poor patient responses. Shockingly, both the OS …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
- Research centre(s)
- Centre for Biomedical Technologies
Development of bioengineered 3D tumour models for preclinical breast cancer research
3D organoid model technologies have led to the development of innovative tools for precision medicine in cancer treatment. Yet, the lack of resemblance to native tumours, and the limited ability to test drugs in a high-throughput mode, has limited translation to practice.This project will progress organoid models by using advanced tissue engineering technologies and high-throughput 3D bioprinting to recreate 'mini-tumours-in-a-dish' from a patient’s own tumour cells, and study the effects of various components of the tumour microenvironment on drug response.In …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
- Research centre(s)
- Centre for Biomedical Technologies
Developing in vitro 3D models to understand liver disease
Several studies have demonstrated the appropriateness of 3D organoid cultures over the conventional 2D cultures, the advantages of 3D models include replicating the complex attributes of the liver beyond liver-specific metabolism, such as increased cell density, organization, and cell–cell signalling, O2 zonation.In this project we will establish a novel in vitro 3D model to study hepatocyte biology in the context of liver disease. A more comprehensive approach to investigating the intercellular mechanisms of NAFLD will include co-culture of organoids with …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Novel therapeutic strategies to treat advanced colorectal cancer
Colorectal cancer is a very common disease, with over 15,000 new cases diagnosed in Australia annually. Metastatic colorectal cancer describes advanced disease that has spread beyond the primary site. This is very aggressive and incurable in the vast majority of these patients. To improve outcomes for colorectal cancer, we are using cutting edge genomic and cell biology techniques to understand disease heterogeneity and optimise drug response. We are developing novel therapeutic interventions based on unique molecular signatures and are testing …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.