QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 3 matching student topics

Displaying 1–3 of 3 results

Mathematical and computational techniques for advection diffusion reaction models

Mathematical models of advection diffusion reaction processes are fundamental to many applied disciplines including physics, biology, ecology and medicine. This project will focus on developing mathematical and computational techniques for continuum (PDE) and/or stochastic (random walk) models of advection diffusion reaction.Potential project topics include:building new simplified models that are easier to implement, interpret and analyseextracting new mathematical insights into advection diffusion reaction processesproposing new methods for parameterising models from datadeveloping new numerical and/or analytical methods for solving PDE models.All project …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences

Mathematical tools for stochastic and continuum transport models

Mathematical models of particle transport are fundamental to many applied disciplines including physics, biology, ecology and medicine. Particle transport is typically modelled using either a stochastic model, where probability rules govern the motion of individual particles, or a continuum model, where partial differential equations govern the concentration of particles in space and time. This project aims to use analytical and numerical techniques from applied and computational mathematics to address one or both of the following questions:what is the average time …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences

Equation learning for partial differential equation models of stochastic random walk models

Random walk models are often used to represent the motion of biological cells. These models are convenient because they allow us to capture randomness and variability. However, these approaches can be computationally demanding for large populations.One way to overcome the computational limitation of using random walk models is to take a continuum limit description, which can efficiently provide insight into the underlying transport phenomena.While many continuum limit descriptions for homogeneous random walk models are available, continuum limit descriptions for heterogeneous …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science

Page 1 of 1

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.