QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 22 matching student topics
Displaying 1–12 of 22 results
Capturing the impact of patient variability in a novel cancer treatment
In 2015, the Food and Drug Association (FDA) approved a lab-engineered virus for the treatment of melanoma (skin cancer). Since then, there has been a significant increase in the number of lab-grown viruses that are being tested in clinical trials as potential treatments of cancer. Unfortunately, it seems that a large number of patients in these clinical trials fail under this treatment and currently there is no way to distinguish between responders and non-responders to treatment.Fortunately, we can use mathematics …
- Study level
- Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Big Data ideas for GLMs
The goal of this project is to develop new Bayesian methods for large-scale data analysis using subsampling techniques. The focus of the project will be on generalised linear models (GLMs), which are commonly used models in statistics and machine learning.One of the main challenges in using Bayesian statistics with big data is the high computational cost associated with processing big datasets. The proposed project aims to address this challenge by developing new subsampling techniques for Piecewise Deterministic Markov Process (PDMP) …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Genetics of cardiovascular disease
This research project involves investigating the genetic basis of cardiovascular disease (CVD). The project will focus on the genetically unique population of Norfolk Island. The Norfolk Island Health Study has been running for 20 yrs. Over this time the cardiovascular health of the Islanders has been tracked via the collection of relevant clinical data. In addition whole genome sequence data from the study group has been collected, which will facilitate the discovery of genetic variants that influence CVD phenotypes - …
- Study level
- PhD
- Faculty
- Faculty of Health
- School
- School of Biomedical Sciences
- Research centre(s)
- Centre for Genomics and Personalised Health
Predicting player performance from one format to another in cricket
Identifying talent as early as possible in elite sport is critical. An important component of this is learning about what metrics of performance in lower grades to focus on to help predict performance in the top grade. This project will explore for this research problem for cricket.
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Developing predictive models, methods and analytics for complex sports data
A 3-year strategic partnership on sports data science between the Centre for Data Science (CDS), the Australian Institute of Sport (AIS) and the Queensland Academy of Sport (QAS) was launched in the past few months. With a drive towards data informed decision making across the high performance sports network nationally, a number of collaborative, interdisciplinary research and scholarship opportunities ranging from VRES, to honours, masters and PhD have developed.
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Statistical methods for detecting Antarctic ecosystems from space
Satellite images are a frequent and free source of global data which can be used to effectively monitor the environment. We can see how the land is being used, how it’s being changed, what’s there – even where animals are in the landscape. Using these images is essential, particularly for regions where data is expensive to collect or difficult to physically access, like Antarctica. In Antarctica and the sub-Antarctic islands, satellite images can be an easy and quick way to …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Centre for the Environment
Statistics via scalable Monte Carlo
Monte Carlo methods use random sampling to approximate solutions to challenging problems. These methods are helpful for statistical models with many parameters, as discussed in this short video. The methods are particularly useful for Bayesian inference where one wishes to get a rigorous understanding of parameter uncertainty.Despite having many advantages over their competitors, Monte Carlo methods can be very slow in the context of big data. In this project, you'll help develop scalable Monte Carlo methods to enable timely and …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Assessing reef restoration using MARRS Reef Stars on the Great Barrier Reef
The Bait Reef rehabilitation project commenced in early 2021 (site surveys, risk assessments and approval processes) and installation on-site occurred in October 2021. Since installation there has been monitoring of the Reef Stars in June 2022, February 2023, and January 2024.Thermal bleaching impacts in early 2022 and rapid colonisation of the area by soft corals meant that by February 2022 more than 50% of the original coral fragments had died. Subsequently, in August 2023 all dead fragments (still attached to …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Earth and Atmospheric Sciences
- Research centre(s)
- Centre for Data Science
Surprising genomes
Genomic sequencing has changed radically since the first public sequencing projects more than 25 years ago. The original human genome project cost more than two billion dollars; sequencing a human genome now costs as little as a thousand, and we may sequence whole viruses and bacteria as a matter of routine.The challenge now lies in rapidly analysing these genomes as they appear, and understanding quickly whether there is anything interesting in the new sequence to warrant further inquiry. This project …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
- Research centre(s)
- Centre for Data Science
Making predictions using simulation-based stochastic mathematical models
Stochastic simulation-based models are very attractive to study population-biology, disease transmission, development and disease. These models naturally incorporate randomness in a way that is consistent with experimental measurements that describe natural phenomena.Standard statistical techniques are not directly compatible with data produced by simulation-based stochastic models since the model likelihood function is unavailable. Progress can be made, however, by introducing an auxiliary likelihood function can be formulated, and this auxiliary likelihood function can be used for identifiability analysis, parameter estimation and …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Efficient parameter estimation for agent-based models of tumour growth
Cancer is an extremely heterogeneous disease, particularly at the cellular level. Cells within a single cancerous tumour undergo vastly different rates of proliferation based on their location and specific genetic mutations. Capturing this stochasticity in cell behaviour and its effect on tumour growth is challenging with a deterministic system, e.g. ordinary differential equations, however, is possible with an agent-based model (ABM). In an ABM, cells are modelled as individual agents that have a probability of proliferation and movement in each …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Unlocking the Potential of Simplex-Truncated Distributions
This PhD project aims to develop new methods for generating random samples from a specific type of probability distributions called simplex-truncated distributions. These distributions are commonly used in various fields such as statistics, machine learning, and biology.The project will involve the development of new techniques to generate random samples from simplex-truncated distributions. These techniques are based on a method called continuous-time Monte Carlo which is a cutting edge method in statistics that can generate random samples from complex distributions.The main …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.