QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 4 matching student topics
Displaying 1–4 of 4 results
Scalable Bayesian Inference using Multilevel Monte Carlo
Bayesian inference is a popular statistical framework for estimating the parameters of statistical models based on data. However, Bayesian methods are well known to be computationally intensive. This fact inhibits the scalability of Bayesian analysis for real-world applications involving complex stochastic models. Such models are common in the fields of biology and ecology.Multilevel Monte Carlo (MLMC) methods are a promising class of techniques for dealing with the scalability challenge. These approaches use hierarchies of approximations to optimise the trade-off between …
- Study level
- Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Branching processes, stochastic simulations and travelling waves
Branching processes are stochastic mathematical models used to study a range of biological processes, including tissue growth and disease transmission.This project will implement a simple stochastic branching process to generate simulations of biological growth, and then consider differential equation-based description of the stochastic model.Using computation we will compare the two models, and use phase plane and perturbation analysis to analyze the resulting traveling wave solutions.
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Making predictions using simulation-based stochastic mathematical models
Stochastic simulation-based models are very attractive to study population-biology, disease transmission, development and disease. These models naturally incorporate randomness in a way that is consistent with experimental measurements that describe natural phenomena.Standard statistical techniques are not directly compatible with data produced by simulation-based stochastic models since the model likelihood function is unavailable. Progress can be made, however, by introducing an auxiliary likelihood function can be formulated, and this auxiliary likelihood function can be used for identifiability analysis, parameter estimation and …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Efficient Parameter Estimation for Stochastic Simulations
Stochastic simulation-based models are routinely used in many areas of science to describe inherent randomness in many real-world systems. Applications include the study of particle physics, imaging if black holes, biochemical processes, the migration of animals, and the spread of infectious diseases. To apply these models to interpret data requires statistical methods to estimate model parameters.Unfortunately, standard statistical techniques are not capable of analysing data using these models. This is largely due to the model likelihood, the probability of the …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Data Science
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.