QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 2 matching student topics

Displaying 1–2 of 2 results

Multi-modal sentiment analysis

In deep learning models, language models and word embedding methods have become popular to understand the context of text data. Popular language models such as BERT have limitations in terms of the token length. There exist some corpora that have longer text with an average of 1000 tokens. Additionally, these corpora are text-heavy and only include some images.In our prior works, we have developed several multi-modality models on social media datasets.

Study level
Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Computer Science
Research centre(s)
Centre for Data Science

Evaluation of language models and word embedding methods for natural language processing applications

In deep learning models, language models and word embedding methods have become popular to understand the context of text data. There exist many variants of these methods and have different limitations. This project will introduce you to the hot topic of language models and the fields of Natural Language Processing and Text Mining. 

Study level
Honours
Faculty
Faculty of Science
School
School of Computer Science
Research centre(s)
Centre for Data Science

Page 1 of 1

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.