QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 32 matching student topics

Displaying 25–32 of 32 results

Capacity, wills and enduring powers of attorney

Dr Kelly Purser is interested in talking to students who wish to undertake research on the topics of capacity, wills, enduring powers of attorney, advance health directives, estate planning, equity and trusts, succession, or therapeutic jurisprudence.

Study level
PhD, Master of Philosophy
School
null
Research centre(s)
null
null

Characterising a DNA repair protein as an anti-cancer therapeutic target and diagnostic marker in brain cancer

Cancer is the single biggest clinical problem facing the world and will account for half of all global deaths by 2030. Even though there have been significant advances in immunotherapy, we are still unable to cure most cancers. New therapeutic targets, individualised to patient needs, must be identified and validated in order to improve cancer outcomes.Brain cancer causes more deaths in people under the age of 40 than any other cancer and more deaths in children than any other disease. …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)
Centre for Genomics and Personalised Health

Characterising the role of PARPs in DNA repair and cancer therapy

The genome of our cells is damaged multiple times each day, by various factors including sunlight and reactive oxygen species. In order for the DNA damage response to be efficient, our cells utilise highly coordinated repair pathways that function accurately and rapidly throughout the damaged cell. Cells that do not repair DNA damage correctly will accumulate damage and display increased genomic instability, which is a key hallmark of cancer cells, promoting their survival and rapid growth. DNA repair pathways are …

Study level
Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Development of a machine learning algorithm for high throughput cell response data in drug therapy

High-throughput screening assays are essential for accelerating drug discovery, but current assays often rely on endpoint measurements that do not capture the dynamic response of cells to drug treatment. Machine learning algorithms (MLAs) have the potential to enable real-time, high-throughput monitoring of cell response to drug treatment by analyzing complex datasets generated by multiplexed live-cell assays. This research project aims to develop an MLA for enabling high throughput cell response data in drug treatment. The project will involve three main …

Study level
Honours
School
School of Computer Science
Research centre(s)
Centre for Biomedical Technologies
Centre for Biomedical Technologies

Characterise a novel DNA repair protein as a target for cancer therapies

Data generated in the lab has identified a novel DNA repair protein previously described as a key protein in HSP70/90 complexes. Many pathways of tumourigenesis are mediated by Heat Shock Proteins and HSP70/90 are found significantly upregulated in ovarian cancers. The targeting of HSP70/90 are an emerging therapeutic avenue for the treatment of ovarian cancer. Supporting this, an inhibitor of HSP90 has been shown to sensitise breast cancer cells to PARP inhibitors and paclitaxel.Our preliminary data indicates that this new …

Study level
Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Development of peptides as therapeutics to treat drug-resistant metastatic melanoma

Melanoma is a very aggressive cancer due to its metastatic potential, and the third most common in Australia. Many patients with metastatic melanoma have strong side effects, do not respond, or develop resistance to current therapies, which results in low survival rate (26% in 5-years). This project aims at developing a new class of therapeutic leads to tackle drug-resistance in metastatic melanoma.Currently, the preferred first-line regimen given to patients with metastatic melanoma is immunotherapy with antibodies (i.e. ipilimumab and nivolumab), …

Study level
PhD
Faculty
Faculty of Health
School
School of Biomedical Sciences

Understanding capsular polysaccharide diversity is key to next generation therapies for multi-drug resistant Acinetobacter baumannii infections

Bacteriophage therapy is an attractive innovative treatment for infections caused by extensively drug resistant Acinetobacter baumannii, for which there are few effective antibiotic treatments remaining.Capsular polysaccharide (CPS) is a primary receptor for lytic bacteriophage, thus knowledge of the chemical structures of CPS produced by the species underpins the identification of suitable phage for therapeutic cocktails.As many phage depolymerases cleave a specific CPS linkage formed by either a glycosyltransferase or polymerase enzyme, characterisation of these proteins are essential.However, these remain largely …

Study level
PhD
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Immunology and Infection Control

BIOM01 - Novel therapeutic strategies for targeting dementia

Dementia exhibits the presence of Lewy bodies in the cerebral cortex, which are composed of α-synuclein (αSYN) or Amyloid-β (Aβ) plaques, as well as hyperphosphorylated tau (P-tau) tangles in various forms of dementia. The exact pathological mechanisms underlying this disease are not well understood; however, there is evidence suggesting the involvement of inflammatory activity. Microglia, macrophage cells residing in the brain responsible for clearing external pathogens and dead cells, are of particular interest.Our study aims to investigate whether Lewy bodies …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Page 3 of 3

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.