QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 476 matching student topics

Displaying 157–168 of 476 results

Computational methods for multi-scale structural optimisation

Structural optimisation is a powerful computational methodology for finding high-performing designs for structural components or material architectures. For example, what periodic scaffold would provide the highest possible stiffness for its weight?Solving such a problem computationally requires an understanding of the relevant equations required to model the physical properties of interest, as well as efficient implementation of a range of numerical methods including finite elements, finite differences and optimisation.With recent developments in 3D printing technologies it is now becoming possible to …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences

Safe and non-flammable electrolytes for batteries

Electrolytes play a significant role in determining the performance of energy storage devices. In general, different types of liquid electrolytes have been investigated so far including organic liquids, ionic liquids, and aqueous. Among them, organic liquid electrolytes are highly flammable and volatile, while aqueous electrolytes suffer from a narrow working voltage window. IL liquid showed a promise to circumvent these challenges, however, their practical applications are plagued by the high cost, difficulty in preparation, and toxicity.This project will develop low-cost …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Exact and approximate solutions of diffusion on evolving domains

Classical applications of mathematical analysis involve solving partial differential equation models on fixed domains, e.g. 0 < x < L. Applications in biology, however, involve studying diffusive transport on rapidly evolving domains, e.g. 0 < x < L(t), where L(t) represents the length of the evolving tissue. While many problems have been addressed for the case where L(t) increases, less attention has been paid to cases where we consider diffusion on an oscillating domain.In this project we will construct exact …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences

Green solvents to recover metals – mining and battery recycling industry

With the ever-increasing demand for batteries, the accelerated production will soon translate into massive amounts of waste. Establishing effective LIB recycling strategies will balance the impact of end-of-life LIB waste and the demands on raw materials in the battery supply chain. Due to high prices of raw materials, the global LIB recycling market was valued at about $1.78 billion in 2017 and is expected to reach $23.72 billion by 2030, suggesting a significant opportunity for the recovery of valuable metals …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics

Polymer particles as precision sensors for molecules

Polymer particles are a billion-dollar industry with a diverse range of applications from biomedical to industrial coatings. As a prime example, point-of-care testing devices rely on polymeric particles with various size and functionality to conveniently allow instantaneous, selective, and precise diagnostics. However, as new applications arise and current applications advance, these demand the preparation of increasingly complex material and particle systems.The Soft Matter Materials Team has developed a simple method to form uniform particles without any additives, initiators or stabilizers. …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Using light for 3D patterning of surfaces: the visible light challenge

Inspired by nature's way of using light to trigger chemical processes known as photosynthesis by green plants, the idea of using light as an energy source to make and break chemical bonds has been widely applied for the development of more complex structures in the soft matter materials design and biological sciences. However, to date, the energy required to activate chemical bond formation was mostly extracted from UV light which is a drawback to develop and apply these reaction systems …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Towards Synthetic protein-structures based on precision macromolecules: can we beat nature in designing catalysts?

Up for a challenge? In this project you can explore if you can beat nature in making catalytic systems! Over billions of years, nature has perfected the design and synthesis of high molecular weight precision macromolecules, which are able to execute a specific function in a complex biological environment such as proteins.

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Macromolecular barcoding for tracing plastic materials for the circular economy: a game changer for recycling

The reduction and management of plastic waste is perhaps the most critical challenge facing modern economies and plastic pollution cannot be resolved by generic approaches to research or to problem-solving. The Soft Matter Materials Team aims to resolve the anonymity and ubiquity of plastics by pioneering a simple optical readout system that can identify the uniquely coded information in macromolecules that have been embedded in plastics.In this project, optically readable macromolecular barcodes based on a system of excimer fluorescence switch-on …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Advanced polymer inks for 3D printing - defining the future of 3D additive manufacturing

Some estimates state that 30% of all manufactured goods will be 3D printed in 2030. A particular type of 3D printing is 3D laser lithography with which micro- and nano-sized structures can be prepared. Such structures find wide ranging applications in meta-materials functioning as invisibility cloaks or scaffolds for single (stem) cell interrogation. Today’s inks for 3D printing, however, only allow one material property to be written with one laser wavelength.Working in close collaboration with team members of the Soft …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Modelling the response of expansive soil under wetting and drying

Expansive soils are those which can experience significant volume change when water content varies and as of this reason they are considered as problematic soils in geotechnical engineering. Expansive soils are widely distributed globally and cover a significant percentage of world land surface, especially in arid and semi-arid area.In Australia, expansive soil covers around 20% of surface soils and approximately 30% of the total ‘built-up’ land area is covered by expansive soils. This figure is expected to increase, as the …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Civil and Environmental Engineering
Research centre(s)
Centre for Materials Science

Developing predictive models, methods and analytics for complex sports data

A 3-year strategic partnership on sports data science between the Centre for Data Science (CDS), the Australian Institute of Sport (AIS) and the Queensland Academy of Sport (QAS) was launched in the past few months. With a drive towards data informed decision making across the high performance sports network nationally, a number of collaborative, interdisciplinary research and scholarship opportunities ranging from VRES, to honours, masters and PhD have developed.

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science

Race for the surface: helping implants to win the race

The recent COVID-19 pandemic reminds us of how difficult it is to control infectious diseases. Pathogenic microorganisms are known to be extremely 'smart' and are able to quickly develop mechanisms against most of our strategies aimed at eradicating them.Our group is focused on bacterial infections to implants and medical devices. We are in the pursuit to outsmart the bacteria to develop the next generation medical device and implant materials.When a biomaterial is implanted into the body and bacteria get into …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Page 14 of 40

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.