QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.
Found 684 matching student topics
Displaying 469–480 of 684 results
Optimising bone shape with memory networks
Bone is a dynamic tissue that optimises its shape to the mechanical loads that it carries. Bone mass is accrued where loads are high, and reduced where loads are low. This adaptation of bone tissue to mechanical loads is well-known and observed in many instances. However, what serves as a reference mechanical state in this shape optimisation remains largely unknown.
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Mathematical Sciences
- Research centre(s)
- Centre for Biomedical Technologies
Automatic Generation of Software Vulnerability Datasets for Machine Learning
In recent years, machine learning has enjoyed profound success in a range of interesting applications such as natural language processing, computer vision and speech recognition. It has been possible mainly due to, in addition to better computing resources, the availability of large amounts of training datasets to these applications. However, in software security research, the lack of large datasets is an open problem that makes it challenging for machine learning to reason about security vulnerabilities found in real-world software. The …
- Study level
- PhD, Master of Philosophy
- Faculty
- Faculty of Science
- School
- School of Computer Science
Building explainable and trustworthy intelligent systems
Existing machine learning-based intelligent systems are autonomous and opaque (often considered “black-box” systems), which has led to the lack of trust in AI adoption and, consequently, the gap between machine and human being.In 2018, the European Parliament adopted the General Data Protection Regulation (GDPR), which introduces a right of explanation for all human individuals to obtain “meaningful explanations of the logic involved” when a decision is made by automated systems. To this end, it is a compliance that an intelligent …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Information Systems
- Research centre(s)
- Centre for Data Science
Surprising genomes
Genomic sequencing has changed radically since the first public sequencing projects more than 25 years ago. The original human genome project cost more than two billion dollars; sequencing a human genome now costs as little as a thousand, and we may sequence whole viruses and bacteria as a matter of routine.The challenge now lies in rapidly analysing these genomes as they appear, and understanding quickly whether there is anything interesting in the new sequence to warrant further inquiry. This project …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
- Research centre(s)
- Centre for Data Science
Data-driven and process-aware workforce analytics
Modern information systems in today’s organisations record massive amount of event log data capturing the execution of day-to-day core processes within and across organisations. Mining these event log data to drive process analytics and knowledge discovery is known as process mining. To date various process mining techniques have been developed to help extract insights about the actual processes with the ultimate goal to organisations' workforce capability and capacity building.As an important sub-field of process mining, organisational mining focuses on discovering …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Information Systems
- Research centre(s)
- Centre for Data Science
Advanced materials for redox flow batteries
Grid-scale energy storage for intermittent renewables like solar and wind is an essential element of the transition away from fossil fuel based electricity production. Redox flow batteries have some very interesting characteristics for this stationary storage application:they are safer than other battery typesthe amount of energy stored can typically be scaled up easilythe power and energy of a system are more decoupled compared to lithium and other batteries, making them flexible in their design parameters.Ion exchange membrane and electrode are …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Chemistry and Physics
- Research centre(s)
- Centre for Materials Science
Explainable AI-enabled predictive analytics
Modern predictive analytics underpinned by AI-enabled learning (such as machine learning, deep learning) techniques has become a key enabler to the automation of data-driven decision making. In the context of process monitoring and forecast, predictive analytics has been applied to making predictions about the future state of a running process instance - for example, which task will be carried out next, when and who will perform the task, when will an ongoing process instance complete, what will be the outcome …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Information Systems
- Research centre(s)
- Centre for Data Science
Representation learning for anti-microbial resistance
This project is about using neural network models help us understand Anti-Microbial Resistance (AMR), a phenomenon in which bacteria adapt to reduce the effectiveness of antibiotics, usually through a process known as Lateral or Horizontal Gene Transfer - where genes are included in the organism from other sources.Our focus will be on learning compact vector representations of biological sequences known to be associated with AMR genes. By encoding DNA sequences in this way we can more rapidly identify AMR genes …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
- Research centre(s)
- Centre for Data Science
Scalable software solutions for improving the CRISPR gene editing system
The CRISPR-Cas9 technology allows the modification of virtually any gene in any organism of interest. It has generated a lot of interest, both in the research community and the general population.One of the crucial components of CRISPR experiments is the design of the 'guide RNAs' that will control where modifications occur. We have developed a software pipeline, named Crackling, to identify safe and effective guide RNAs across entire genomes.We are seeking to expand and improve various aspects of our current …
- Study level
- Honours
- Faculty
- Faculty of Science
- School
- School of Computer Science
- Research centre(s)
- Centre for Data Science
Simulation of turbulent fluid flow through a microfluidic device using CFD
Microfluidic devices (MFD) are extensively used in microbial studies. Bacterial cell attachment onto surfaces under flow conditions in laminar regime has been previously studied using a custom designed MFD.As an extension of this study, microbial attachment under turbulent flow is to be studied in a future project. The suitability of current MFD for microbial studies under turbulent flow must be evaluated to adopt / redesign the MFD.A computational fluid dynamics (CFD) analysis is proposed to examine the fluid flow inside …
- Study level
- Honours
- Faculty
- Faculty of Engineering
- School
- School of Mechanical, Medical and Process Engineering
Sport AI
Videos of sport activities are widely available at large scales. AI and its sub-fields, especially computer vision and machine learning, have a great potential to analyse, understand and extract useful information from these videos.This project aims at using AI and its subfields in computer vision and machine learning to develop techniques for analysing sport videos to extract intelligence for players and coaches.
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Engineering
- School
- School of Electrical Engineering and Robotics
Transport big data analytics: Imputing missing data
The missing data problem is often unavoidable for real-world data collection systems because of a variety of factors, such as sensor malfunctioning, maintenance work, transmission errors, and so on. Filling in missing information in a dataset is an important requirement for many machine-learning algorithms that require a complete dataset as input. Data imputation algorithms aim at filling the missing information in a dataset. Many missing data imputation techniques exist in the literature, with applications demonstrated on various types of datasets. …
- Study level
- PhD, Master of Philosophy, Honours
- Faculty
- Faculty of Engineering
- School
- School of Civil and Environmental Engineering
- Research centre(s)
- Centre for Data Science
Contact us
If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.